Suppr超能文献

用于稳定低偏压光电化学太阳能到燃料转换的石墨烯/立方碳化硅肖特基结的原子尺度调谐

Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion.

作者信息

Li Hao, Shi Yuchen, Shang Huan, Wang Weimin, Lu Jun, Zakharov Alexei A, Hultman Lars, Uhrberg Roger I G, Syväjärvi Mikael, Yakimova Rositsa, Zhang Lizhi, Sun Jianwu

机构信息

Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China.

出版信息

ACS Nano. 2020 Apr 28;14(4):4905-4915. doi: 10.1021/acsnano.0c00986. Epub 2020 Apr 7.

Abstract

Engineering tunable graphene-semiconductor interfaces while simultaneously preserving the superior properties of graphene is critical to graphene-based devices for electronic, optoelectronic, biomedical, and photoelectrochemical applications. Here, we demonstrate this challenge can be surmounted by constructing an interesting atomic Schottky junction epitaxial growth of high-quality and uniform graphene on cubic SiC (3C-SiC). By tailoring the graphene layers, the junction structure described herein exhibits an atomic-scale tunable Schottky junction with an inherent built-in electric field, making it a perfect prototype to systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, the atomic-scale-tuned Schottky junction is demonstrated to promote both the separation and transport of charge carriers in a typical photoelectrochemical system for solar-to-fuel conversion under low bias. Simultaneously, the as-grown monolayer graphene with an extremely high conductivity protects the surface of 3C-SiC from photocorrosion and energetically delivers charge carriers to the loaded cocatalyst, achieving a synergetic enhancement of the catalytic stability and efficiency.

摘要

在保留石墨烯卓越性能的同时构建可调控的石墨烯-半导体界面,对于用于电子、光电子、生物医学和光电化学应用的基于石墨烯的器件至关重要。在此,我们证明通过在立方碳化硅(3C-SiC)上外延生长高质量且均匀的石墨烯来构建有趣的原子级肖特基结,可以克服这一挑战。通过调整石墨烯层,本文所述的结结构展现出具有固有内建电场的原子级可调肖特基结,使其成为系统理解界面电子性质和输运机制的完美原型。作为概念验证研究,原子级调谐的肖特基结被证明在低偏压下能促进典型光电化学系统中用于太阳能到燃料转换的电荷载流子的分离和输运。同时,生长的具有极高电导率的单层石墨烯可保护3C-SiC表面免受光腐蚀,并有力地将电荷载流子传递给负载的助催化剂,实现催化稳定性和效率的协同增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a37/7304924/b14c753438cd/nn0c00986_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验