Ta Huy Q, Perello David J, Duong Dinh Loc, Han Gang Hee, Gorantla Sandeep, Nguyen Van Luan, Bachmatiuk Alicja, Rotkin Slava V, Lee Young Hee, Rümmeli Mark H
College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland.
Nano Lett. 2016 Oct 12;16(10):6403-6410. doi: 10.1021/acs.nanolett.6b02826. Epub 2016 Oct 3.
Aside from unusual properties of monolayer graphene, bilayer has been shown to have even more interesting physics, in particular allowing bandgap opening with dual gating for proper interlayer symmetry. Such properties, promising for device applications, ignited significant interest in understanding and controlling the growth of bilayer graphene. Here we systematically investigate a broad set of flow rates and relative gas ratio of CH to H in atmospheric pressure chemical vapor deposition of multilayered graphene. Two very different growth windows are identified. For relatively high CH to H ratios, graphene growth is relatively rapid with an initial first full layer forming in seconds upon which new graphene flakes nucleate then grow on top of the first layer. The stacking of these flakes versus the initial graphene layer is mostly turbostratic. This growth mode can be likened to Stranski-Krastanov growth. With relatively low CH to H ratios, growth rates are reduced due to a lower carbon supply rate. In addition bi-, tri-, and few-layer flakes form directly over the Cu substrate as individual islands. Etching studies show that in this growth mode subsequent layers form beneath the first layer presumably through carbon radical intercalation. This growth mode is similar to that found with Volmer-Weber growth and was shown to produce highly oriented AB-stacked materials. These systematic studies provide new insight into bilayer graphene formation and define the synthetic range where gapped bilayer graphene can be reliably produced.
除了单层石墨烯的特殊性质外,双层石墨烯已被证明具有更有趣的物理特性,特别是通过双栅极实现带隙打开以获得适当的层间对称性。这些有望用于器件应用的特性,引发了人们对理解和控制双层石墨烯生长的浓厚兴趣。在此,我们系统地研究了多层石墨烯常压化学气相沉积中一系列广泛的流速以及CH与H的相对气体比例。确定了两种截然不同的生长窗口。对于相对较高的CH与H比例,石墨烯生长相对较快,最初的完整第一层在数秒内形成,随后新的石墨烯薄片在其上成核并在第一层顶部生长。这些薄片相对于初始石墨烯层的堆叠大多是乱层的。这种生长模式可类比为斯特兰斯基-克拉斯坦诺夫生长。当CH与H比例相对较低时,由于碳供应速率较低,生长速率降低。此外,双层、三层和少层薄片作为单独的岛状物直接在铜衬底上形成。蚀刻研究表明,在这种生长模式下,后续层大概是通过碳自由基插入在第一层下方形成的。这种生长模式类似于沃尔默-韦伯生长模式,并且已被证明能产生高度取向的AB堆叠材料。这些系统研究为双层石墨烯的形成提供了新的见解,并确定了能够可靠生产带隙双层石墨烯的合成范围。