Suppr超能文献

染色体的定向排列在后生动物的动粒处产生数百皮牛顿的力。

Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore.

机构信息

Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA.

Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

Nat Commun. 2016 Oct 20;7:13221. doi: 10.1038/ncomms13221.

Abstract

High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore-microtubule (kt-MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1-2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores.

摘要

通过细胞分裂实现基因组的高保真传递,需要所有姐妹动粒与来自纺锤体相对两极的动态微管(MT)结合。将相反的力施加到这个双取向的构象上,会产生张力,从而稳定动粒-MT(kt-MT)附着。确定作用在动粒上的力的大小是理解染色体分离的机械分子基础的核心;然而,现有的动粒力测量跨度数量级。在这里,我们通过在果蝇动粒蛋白着丝粒蛋白(CENP)-C 中构建两个校准力传感器来测量动粒力。两个报告器的测量值表明,在中期它们平均受到约 1-2 皮牛顿(pN)的力。根据每个果蝇动粒的 CENP-C 分子和 MT 的数量的估计,并设想动粒连接以使其在它们之间分布力,我们提出动粒纤维(k-纤维)向双取向的动粒施加数百皮牛顿的指向极的力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60f2/5080440/d37a7c87f1fc/ncomms13221-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验