Kajtez Janko, Solomatina Anastasia, Novak Maja, Polak Bruno, Vukušić Kruno, Rüdiger Jonas, Cojoc Gheorghe, Milas Ana, Šumanovac Šestak Ivana, Risteski Patrik, Tavano Federica, Klemm Anna H, Roscioli Emanuele, Welburn Julie, Cimini Daniela, Glunčić Matko, Pavin Nenad, Tolić Iva M
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
Nat Commun. 2016 Jan 5;7:10298. doi: 10.1038/ncomms10298.
During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term 'bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape.
在中期,着丝粒上的力由动粒纤维施加,动粒纤维是终止于着丝粒的微管束。有趣的是,在姐妹着丝粒之间观察到了非动粒微管,但其功能尚不清楚。在这里,我们通过激光切割HeLa和PtK1细胞中的一条动粒纤维表明,一束我们称为“桥连纤维”的非动粒微管连接着姐妹动粒纤维并平衡着丝粒间的张力。我们在桥连纤维中发现了PRC1和EB3,这表明它由反平行的动态微管组成。通过使用一个包含桥连纤维的理论模型,我们表明极点和着丝粒处的力取决于桥连纤维的厚度。此外,我们的理论和实验表明,对于更靠近着丝粒的切割,着丝粒间距离的松弛更大。我们得出结论,桥连纤维通过连接姐妹动粒纤维,承受姐妹着丝粒之间的张力,并使纺锤体能够获得弯曲形状。