Zhu Jiang, Qi Li, Miao Yusi, Ma Teng, Dai Cuixia, Qu Yueqiao, He Youmin, Gao Yiwei, Zhou Qifa, Chen Zhongping
Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA.
Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA.
Sci Rep. 2016 Oct 20;6:35499. doi: 10.1038/srep35499.
Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.
弹性成像基于组织硬度信息,为组织病理学识别和临床诊断提供了一个强大的工具。光学微弹性成像受益于高分辨率、三维(3D)和无创光学相干断层扫描(OCT),能够在三维样本中以约10μm的分辨率确定弹性特性。剪切波速度测量可用于量化弹性模量。然而,在目前的方法中,剪切波是在表面附近测量的,存在表面波的干扰。在本研究中,我们开发了声辐射力(ARF)正交激发光学相干弹性成像(ARFOE-OCE)来可视化三维中的剪切波。该方法使用垂直于OCT光束的声力在内部样本中激发剪切波,并使用多普勒方差法在三维中可视化剪切波传播。测量得到的剪切波传播与有限元分析(FEA)获得的模拟结果吻合良好。正交声激发使该方法能够测量更深样本中的剪切模量,从而将弹性测量范围扩展到OCT成像深度之外。结果表明,ARFOE-OCE系统具有无创确定三维弹性图的能力。