Leinen Philipp, Green Matthew F B, Esat Taner, Wagner Christian, Tautz F Stefan, Temirov Ruslan
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich; Fundamentals of Future Information Technology, Jülich Aachen Research Alliance (JARA).
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich; Fundamentals of Future Information Technology, Jülich Aachen Research Alliance (JARA);
J Vis Exp. 2016 Oct 2(116):54506. doi: 10.3791/54506.
Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.
将有机分子视为未来纳米级技术的功能构建块,如何以自下而上的方式排列和组装这些构建块的问题仍然悬而未决。扫描探针显微镜(SPM)可能是一种选择工具;然而,直到最近基于SPM的操纵还仅限于二维(2D)。将SPM探针在一个明确的位置与分子结合,为在三维空间中进行可控操纵提供了机会。不幸的是,三维操纵在很大程度上与在计算机上查看和生成SPM数据的典型二维模式不兼容。因此,为了实现直观高效的操纵,我们将低温非接触原子力/扫描隧道显微镜(LT NC-AFM/STM)与运动捕捉系统和全沉浸式虚拟现实护目镜相结合。这种设置允许“手动控制操纵”(HCM),即SPM探针根据实验者手部的运动而移动,同时探针轨迹以及SPM结的响应以三维形式可视化。HCM为复杂操纵协议的开发铺平了道路,有可能使我们对表面分子间纳米级相互作用有更好的基本理解。在此,我们描述了在虚拟现实环境中实现成功的手动控制分子操纵所需的设置和步骤。