Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
Univ. Grenoble Alpes, CNRS UMR 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France.
Nat Chem. 2016 Nov;8(11):1054-1060. doi: 10.1038/nchem.2575. Epub 2016 Jul 18.
Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H evolution (second-order rate constant of 2.5 × 10 M s; turnover frequency of 250 s at 10 mM H concentration) from mildly acidic solutions.
通过水分解生产氢气是储存可再生能源的最有前途的解决方案之一。[NiFe]氢化酶是含有镍和铁中心的金属有机酶,它催化氢的释放,其性能可与铂相媲美。这些酶为设计不需要贵金属的新型分子催化剂提供了灵感。然而,迄今为止报道的所有异双核 NiFe 模型都不能再现[NiFe]氢化酶活性位点中发现的 Ni 中心反应性。在这里,我们报告了一种结构和功能上的 NiFe 模拟物,它显示了 Ni 位点的反应性。这是通过检测到两种催化中间体来证明的,这两种中间体在催化循环过程中再现了酶的 Ni-L 和 Ni-R 状态的结构和电子特征。在电催化条件下,该模拟物在温和酸性溶液中显示出高的 H 释放速率(二级反应常数为 2.5×10 M s;在 10 mM H 浓度下的周转率为 250 s)。