School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China.
Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University , New York, New York 10065, United States.
J Am Chem Soc. 2016 Nov 2;138(43):14423-14433. doi: 10.1021/jacs.6b08733. Epub 2016 Oct 21.
Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.
在过去的几年中,荧光蛋白(例如绿色荧光蛋白)已被广泛用于可视化活细胞中重组蛋白的表达和定位。尽管荧光蛋白标签功能强大,但它们的相对较大尺寸和对蛋白质功能的潜在干扰限制了其应用。相反,使用生物正交化学技术,通过对小分子有机荧光团进行定点标记,可以提供一种更精确、干扰更小的方法。这种方法涉及通过遗传密码扩展,将非天然氨基酸(UAAs)定点掺入蛋白质中,然后在活细胞中用小分子有机荧光团进行生物正交化学标记。虽然这种方法已被用于标记细胞外蛋白质进行活细胞成像研究,但在活细胞中对内质网蛋白进行定点生物正交标记和荧光成像仍然具有挑战性。在此,我们系统地评估了在手性纯的生物正交 UAAs 上带有染色炔烃或烯烃的非对映异构体,用于与四嗪功能化荧光团进行逆电子需求 Diels-Alder 加成反应,以对哺乳动物细胞中的内源性蛋白质进行定点生物正交标记和荧光成像。我们的研究表明,轴向非对映异构体的反式环辛-2-烯-赖氨酸的定点掺入能够在活的哺乳动物细胞中高效且特异性地进行生物正交标记,用单取代的四嗪荧光团进行标记,这使得我们能够首次对 IFITM3(一种仅含有 137 个氨基酸的小膜相关蛋白)的细胞内定位和实时动态运输进行成像。我们优化的 UAA 掺入和生物正交标记条件也能够实现其他内源性蛋白质的高效定点荧光标记,从而用于哺乳动物细胞中的活细胞成像研究。