University of Washington, Department of Physiology & Biophysics, Seattle, United States.
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States.
Elife. 2024 Aug 20;12:RP91012. doi: 10.7554/eLife.91012.
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
配体,如胰岛素、表皮生长因子、血小板衍生生长因子和神经生长因子(NGF),通过与受体酪氨酸激酶(RTKs)结合在细胞膜上引发信号。与 G 蛋白偶联受体一样,RTKs 是将细胞外信号转导为细胞内信号的主要平台。然而,由于 RTKs 通常与多种信号通路偶联,包括 MAP/ERK、PLCγ 和 Class 1A 磷酸肌醇 3-激酶(PI3K),因此研究 RTK 信号转导一直是一个挑战。多方面的 RTK 信号转导一直是分离任何一条下游途径影响的障碍。在这里,我们使用光遗传学激活 PI3K 将其激活与其他 RTK 信号通路分离。在这种情况下,我们使用遗传密码扩展将点击化学非天然氨基酸引入膜蛋白的细胞外侧。应用细胞不可渗透的点击化学荧光团,使我们能够实时可视化膜蛋白递送到质膜。使用这些方法,我们证明了 PI3K 的激活,而不激活 RTK 信号下游的其他途径,足以将 TRPV1 离子通道和胰岛素受体运输到质膜。