Suppr超能文献

一种用于检测PCR富集靶向测序数据中拷贝数变异的统计方法。

A statistical approach to detection of copy number variations in PCR-enriched targeted sequencing data.

作者信息

Demidov German, Simakova Tamara, Vnuchkova Julia, Bragin Anton

机构信息

Parseq Lab, Birzhevaya, 16, Saint-Petersburg, 199053, Russia.

Department of Mathematics and Information Technology in SPbAU RAS, Khlopina, 8/3, Saint-Petersburg, 194021, Russia.

出版信息

BMC Bioinformatics. 2016 Oct 22;17(1):429. doi: 10.1186/s12859-016-1272-6.

Abstract

BACKGROUND

Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool.

RESULTS

We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance.

CONCLUSION

We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.

摘要

背景

多重聚合酶链反应(PCR)是靶向大规模平行测序(MPS)方案中一种常见的富集技术。MPS作为检测短基因变异的快速且准确的工具,在生物医学研究和临床诊断中被广泛应用。然而,对于靶向MPS而言,识别诸如结构变异和拷贝数变异(CNV)等较大变异仍然是一项挑战。虽然已经提出了一些用于检测结构变异的方法和工具,但它们存在局限性,并且通常需要特定类型、大小以及受CNV影响的扩增子预期数量的数据集。在本文中,我们描述了一种用于在PCR富集的靶向测序数据中进行高分辨率生殖系CNV检测的新算法,并展示了配套工具。

结果

我们开发了一种机器学习算法,用于检测基于PCR富集步骤生成的靶向测序数据中的大片段重复和缺失。我们进行了验证研究,并确定了该算法的敏感性和特异性。我们将开发的工具与适用于所述数据的其他可用方法进行了比较,发现其性能更高。

结论

我们表明,我们的方法在使用大量样本队列的靶向测序数据中进行高分辨率拷贝数检测时具有高特异性和敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ec/5075217/b9408f437f3f/12859_2016_1272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验