Suppr超能文献

免费的靶向下一代测序数据拷贝数变异检测工具。

Free-access copy-number variant detection tools for targeted next-generation sequencing data.

机构信息

University of Santiago de Compostela, Spain; Genomes and Disease Group, Molecular Medicine and Chronic Diseases Centre (CiMUS), University of Santiago de Compostela, Spain; Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Spain.

Galician Research and Development Center in Advanced Telecommunications (GRADIANT), Vigo, Spain.

出版信息

Mutat Res Rev Mutat Res. 2019 Jan-Mar;779:114-125. doi: 10.1016/j.mrrev.2019.02.005. Epub 2019 Feb 23.

Abstract

Copy number variants (CNVs) are intermediate-scale structural variants containing copy number changes involving DNA fragments of between 1 kb and 5 Mb. Although known to account for a significant proportion of the genetic burden in human disease, the role of CNVs (especially small CNVs) is often underestimated, as they are undetectable by traditional Sanger sequencing. Since the development of next-generation sequencing (NGS) technologies, several research groups have compared depth of coverage (DoC) patterns between samples, an approach that may facilitate effective CNV detection. Most CNV detection tools based on DoC comparisons are designed to work with whole-genome sequencing (WGS) or whole-exome sequencing (WES) data. However, few methods developed to date are designed for custom/commercial targeted NGS (tg-NGS) panels, the assays most commonly used for diagnostic purposes. Moreover, the development and evaluation of these tools is hindered by (i) the scarcity of thoroughly annotated data containing CNVs and (ii) a dearth of simulation tools for WES and tg-NGS that mimic the errors and biases encountered in these data. Here, we review DoC-based CNV detection methods described in the current literature, assess their performance with simulated tg-NGS data, and discuss their strengths and weaknesses when integrated into the daily laboratory workflow. Our findings suggest that the best methods for CNV detection in tg-NGS panels are DECoN, ExomeDepth, and ExomeCNV. Regardless of the method used, there is a need to make these programs more user-friendly to enable their use by diagnostic laboratory staff who lack bioinformatics training.

摘要

拷贝数变异(CNVs)是一种中等规模的结构变异,包含涉及 1kb 到 5Mb 之间的 DNA 片段的拷贝数变化。虽然已知 CNVs 在人类疾病的遗传负担中占很大比例,但由于它们无法通过传统的桑格测序检测到,因此通常被低估。自下一代测序(NGS)技术发展以来,几个研究小组已经比较了样本之间的深度覆盖(DoC)模式,这种方法可能有助于有效地检测 CNV。大多数基于 DoC 比较的 CNV 检测工具都是为全基因组测序(WGS)或全外显子组测序(WES)数据设计的。然而,迄今为止开发的很少方法是为定制/商业靶向 NGS(tg-NGS)面板设计的,这些检测方法是最常用于诊断目的的检测方法。此外,这些工具的开发和评估受到以下因素的阻碍:(i)包含 CNV 的经过充分注释的数据稀缺;(ii)缺乏用于 WES 和 tg-NGS 的模拟工具,这些模拟工具可以模拟在这些数据中遇到的错误和偏差。在这里,我们回顾了当前文献中描述的基于 DoC 的 CNV 检测方法,评估了它们在模拟 tg-NGS 数据中的性能,并讨论了将它们集成到日常实验室工作流程中的优缺点。我们的研究结果表明,用于 tg-NGS 面板中 CNV 检测的最佳方法是 DECoN、ExomeDepth 和 ExomeCNV。无论使用哪种方法,都需要使这些程序更易于使用,以便缺乏生物信息学培训的诊断实验室工作人员能够使用它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验