Forest Valérie, Pourchez Jérémie
Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42023 Saint Etienne, France; Université de Lyon, F-69000 Lyon, France.
Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42023 Saint Etienne, France; Université de Lyon, F-69000 Lyon, France.
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 1):889-896. doi: 10.1016/j.msec.2016.09.016. Epub 2016 Sep 9.
The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed.
细胞对纳米颗粒的内化作用(更广泛地说是纳米颗粒与细胞的相互作用),对于生物医学应用(设计具有增强细胞摄取能力以达到其细胞内治疗靶点的纳米载体)和纳米安全性而言都是一个关键问题(因为内化剂量是细胞毒性的关键因素之一)。许多参数会影响纳米颗粒与细胞的相互作用,其中包括纳米颗粒的物理化学特性,尤其是表面电荷。一般认为,带正电的纳米颗粒比中性或带负电的纳米颗粒更容易被细胞摄取。据推测,这是由于与带负电的细胞膜存在有利的静电相互作用。然而,这一理论似乎过于简单,因为它没有考虑一个基本因素:纳米颗粒蛋白冠层。实际上,一旦纳米颗粒被引入生物介质中,它们就会在其表面吸附蛋白质,形成一个定义纳米颗粒“生物学身份”的新界面。这在与生物系统的相互作用中增加了一个新的复杂层面,这种相互作用不再能仅仅局限于静电结合。这些相互作用进而会影响细胞行为。基于文献综述以及我们自身经验的一个例子,本文讨论了纳米颗粒蛋白冠层形成以及纳米颗粒与细胞相互作用中所涉及的参数。
Adv Exp Med Biol. 2018
Biomaterials. 2016-9-13
Colloids Surf B Biointerfaces. 2017-5-1
Semin Immunol. 2017-10-21
ACS Appl Mater Interfaces. 2015-9-23
BMC Oral Health. 2025-8-22
J Nanobiotechnology. 2025-4-24
Front Cell Dev Biol. 2025-1-24
Bioengineering (Basel). 2024-12-3