Daniels D R
College of Engineering, Swansea University, Bay Campus, Fabian Way, SA1 8EN, Swansea, UK.
Eur Phys J E Soft Matter. 2016 Oct;39(10):96. doi: 10.1140/epje/i2016-16096-3. Epub 2016 Oct 24.
Using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces, we provide, via a Stokeslet-type approach, a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions.
利用曲面上严格的低雷诺数流体动力学理论,我们通过一种斯托克斯元类型的方法,为嵌入任意(尽管是弱)弯曲流体膜中的小内含物的扩散常数,给出了对规范的、平面的萨夫曼 - 德尔布吕克值的主导阶曲率修正的一般且简洁的表达式。为了证明这一一般结果的有效性和实用性,我们将我们的理论应用于计算局部诱导曲率的膜内含物扩散系数的具体情况。通过考虑内含物和膜弹性的影响以及它们各自的热形状涨落,发现与最近发表的关于膜结合内含物表面张力依赖性迁移率的实验数据有很好的一致性。