Suppr超能文献

膜管上的扩散:对萨夫曼-德尔布吕克理论的高度判别性检验。

Diffusion on membrane tubes: a highly discriminatory test of the Saffman-Delbruck theory.

作者信息

Daniels D R, Turner M S

机构信息

Multidisciplinary Nanotechnology Centre, School of Engineering, University of Wales Swansea, Swansea SA2 8PP, UK.

出版信息

Langmuir. 2007 Jun 5;23(12):6667-70. doi: 10.1021/la0635000. Epub 2007 May 10.

Abstract

The efficient transport of membrane proteins is vital in maintaining life. In this work, we investigate the transport of such membrane proteins along long thin membrane tubes or tethers. We calculate the diffusion constant to leading order in the low Reynolds number regime to be D = (4 pi eta)-1 log(r/a), with r and a being the tube and protein radii, respectively, and eta being the membrane viscosity. Thus we propose an exact limiting form for the controversial logarithmic correction, such as originally introduced by Saffman and Delbruck, that involves the tube radius rather than some "frame size". Our work suggests a test of this logarithmic correction could be achieved by measuring diffusion on membrane tubes, exploiting the fact that the equilibrium tube radius can be controlled by the membrane tension and varied over several orders of magnitude. We analyze the time taken for a protein to transit a membrane tube between cells and find that this can vary by an order of magnitude over physiological tensions. This is a strong effect in biological terms and suggests a possible regulatory coupling between membrane tension and signaling.

摘要

膜蛋白的高效运输对维持生命至关重要。在这项工作中,我们研究了此类膜蛋白沿长而细的膜管或系链的运输。我们计算出在低雷诺数 regime 中扩散常数的主导阶为 D = (4π η)-1 log(r/a),其中 r 和 a 分别为管半径和蛋白半径,η 为膜粘度。因此,我们为有争议的对数校正提出了一种精确的极限形式,例如最初由萨夫曼和德尔布吕克引入的,该形式涉及管半径而非某些“框架尺寸”。我们的工作表明,可以通过测量膜管上的扩散来检验这种对数校正,利用平衡管半径可由膜张力控制并在几个数量级上变化这一事实。我们分析了蛋白质在细胞间穿越膜管所需的时间,发现这在生理张力范围内可能相差一个数量级。从生物学角度来看,这是一个很强的效应,表明膜张力与信号传导之间可能存在调节耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验