Kim Sun-Hee, Faloutsos Christos, Yang Hyung-Jeong, Lee Seong-Whan
1 Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713, South Korea.
2 School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213, USA.
J Integr Neurosci. 2016 Sep;15(3):381-402. doi: 10.1142/S0219635216500242. Epub 2016 Oct 24.
We propose a nonlinear dynamic model for an invasive electroencephalogram analysis that learns the optimal parameters of the neural population model via the Levenberg-Marquardt algorithm. We introduce the crucial windows where the estimated parameters present patterns before seizure onset. The optimal parameters minimizes the error between the observed signal and the generated signal by the model. The proposed approach effectively discriminates between healthy signals and epileptic seizure signals. We evaluate the proposed method using an electroencephalogram dataset with normal and epileptic seizure sequences. The empirical results show that the patterns of parameters as a seizure approach and the method is efficient in analyzing nonlinear epilepsy electroencephalogram data. The accuracy of estimating the optimal parameters is improved by using the nonlinear dynamic model.
我们提出了一种用于侵入性脑电图分析的非线性动态模型,该模型通过Levenberg-Marquardt算法学习神经群体模型的最优参数。我们引入了关键窗口,在癫痫发作开始前,估计参数在这些窗口中呈现出特定模式。最优参数使观测信号与模型生成信号之间的误差最小化。所提出的方法能够有效地区分健康信号和癫痫发作信号。我们使用包含正常和癫痫发作序列的脑电图数据集对所提出的方法进行评估。实证结果表明,随着癫痫发作临近,参数的模式以及该方法在分析非线性癫痫脑电图数据方面是有效的。使用非线性动态模型提高了估计最优参数的准确性。