Parvez Mohammad Zavid, Paul Manoranjan
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):158-68. doi: 10.1109/TNSRE.2015.2458982. Epub 2015 Jul 22.
Automated seizure prediction has a potential in epilepsy monitoring, diagnosis, and rehabilitation. Electroencephalogram (EEG) is widely used for seizure detection and prediction. This paper proposes a new seizure prediction approach based on spatiotemporal relationship of EEG signals using phase correlation. This measures the relative change between current and reference vectors of EEG signals which can be used to identify preictal/ictal (before the actual seizure onset/ actual seizure period) and interictal (period between adjacent seizures) EEG signals to predict the seizure. The experiments show that the proposed method is less sensitive to artifacts and provides higher prediction accuracy (i.e., 91.95%) and lower number of false alarms compared to the state-of-the-art methods using intracranial EEG signals in different brain locations of 21 patients from a benchmark data set.
自动癫痫发作预测在癫痫监测、诊断和康复方面具有潜力。脑电图(EEG)被广泛用于癫痫发作检测和预测。本文提出了一种基于EEG信号时空关系并利用相位相关性的新型癫痫发作预测方法。这一方法测量了EEG信号当前向量与参考向量之间的相对变化,可用于识别发作前期/发作期(实际癫痫发作开始前/实际癫痫发作期间)和发作间期(相邻癫痫发作之间的时间段)的EEG信号,以预测癫痫发作。实验表明,与使用来自一个基准数据集的21名患者不同脑区颅内EEG信号的现有方法相比,该方法对伪迹的敏感性较低,预测准确率更高(即91.95%),误报数量更少。