Suppr超能文献

稳健的数据驱动方法将先验知识纳入动态调控网络推断中。

Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks.

机构信息

Computational Biology Program, New York University Sackler School of Medicine, New York, NY 10065, USA.

出版信息

Bioinformatics. 2013 Apr 15;29(8):1060-7. doi: 10.1093/bioinformatics/btt099. Epub 2013 Mar 21.

Abstract

MOTIVATION

Inferring global regulatory networks (GRNs) from genome-wide data is a computational challenge central to the field of systems biology. Although the primary data currently used to infer GRNs consist of gene expression and proteomics measurements, there is a growing abundance of alternate data types that can reveal regulatory interactions, e.g. ChIP-Chip, literature-derived interactions, protein-protein interactions. GRN inference requires the development of integrative methods capable of using these alternate data as priors on the GRN structure. Each source of structure priors has its unique biases and inherent potential errors; thus, GRN methods using these data must be robust to noisy inputs.

RESULTS

We developed two methods for incorporating structure priors into GRN inference. Both methods [Modified Elastic Net (MEN) and Bayesian Best Subset Regression (BBSR)] extend the previously described Inferelator framework, enabling the use of prior information. We test our methods on one synthetic and two bacterial datasets, and show that both MEN and BBSR infer accurate GRNs even when the structure prior used has significant amounts of error (>90% erroneous interactions). We find that BBSR outperforms MEN at inferring GRNs from expression data and noisy structure priors.

AVAILABILITY AND IMPLEMENTATION

Code, datasets and networks presented in this article are available at http://bonneaulab.bio.nyu.edu/software.html.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从全基因组数据推断全局调控网络(GRN)是系统生物学领域的一个计算挑战。尽管目前用于推断 GRN 的主要数据包括基因表达和蛋白质组学测量,但越来越多的替代数据类型可以揭示调控相互作用,例如 ChIP-Chip、文献来源的相互作用、蛋白质-蛋白质相互作用。GRN 推断需要开发能够将这些替代数据用作 GRN 结构先验的综合方法。每个结构先验源都有其独特的偏差和固有潜在误差;因此,使用这些数据的 GRN 方法必须对噪声输入具有鲁棒性。

结果

我们开发了两种将结构先验纳入 GRN 推断的方法。这两种方法[修正弹性网络(MEN)和贝叶斯最佳子集回归(BBSR)]扩展了先前描述的 Inferelator 框架,从而能够使用先验信息。我们在一个合成数据集和两个细菌数据集上测试了我们的方法,并表明即使使用具有大量错误(>90%错误相互作用)的结构先验,MEN 和 BBSR 也能推断出准确的 GRN。我们发现,BBSR 在从表达数据和嘈杂的结构先验推断 GRN 方面优于 MEN。

可用性和实现

本文中介绍的代码、数据集和网络可在 http://bonneaulab.bio.nyu.edu/software.html 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7f0/3624811/5a03b99226ff/btt099f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验