Suppr超能文献

整合文献约束和数据驱动的信号网络推断。

Integrating literature-constrained and data-driven inference of signalling networks.

机构信息

Department of Information Engineering, University of Padova, Padova, 31050, Italy.

出版信息

Bioinformatics. 2012 Sep 15;28(18):2311-7. doi: 10.1093/bioinformatics/bts363. Epub 2012 Jun 25.

Abstract

MOTIVATION

Recent developments in experimental methods facilitate increasingly larger signal transduction datasets. Two main approaches can be taken to derive a mathematical model from these data: training a network (obtained, e.g., from literature) to the data, or inferring the network from the data alone. Purely data-driven methods scale up poorly and have limited interpretability, whereas literature-constrained methods cannot deal with incomplete networks.

RESULTS

We present an efficient approach, implemented in the R package CNORfeeder, to integrate literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. Our method extends a given network with links derived from the data via various inference methods, and uses information on physical interactions of proteins to guide and validate the integration of links. We apply CNORfeeder to a network of growth and inflammatory signalling. We obtain a model with superior data fit in the human liver cancer HepG2 and propose potential missing pathways.

AVAILABILITY

CNORfeeder is in the process of being submitted to Bioconductor and in the meantime available at www.cellnopt.org.

CONTACT

saezrodriguez@ebi.ac.uk

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

实验方法的最新进展使得信号转导数据集越来越大。从这些数据中推导出数学模型有两种主要方法:将网络(例如,从文献中获得)训练到数据中,或者仅从数据中推断网络。纯数据驱动的方法扩展效果不佳,并且可解释性有限,而受文献限制的方法则无法处理不完整的网络。

结果

我们提出了一种有效的方法,该方法在 R 包 CNORfeeder 中实现,用于从扰动实验中推断信号网络,该方法将受文献约束和数据驱动的方法结合起来,通过各种推理方法从数据中推导出链接,并利用蛋白质物理相互作用的信息来指导和验证链接的集成。我们将 CNORfeeder 应用于生长和炎症信号网络。我们得到了一个在人肝癌 HepG2 中具有更好数据拟合的模型,并提出了潜在的缺失途径。

可用性

CNORfeeder 正在提交给 Bioconductor,同时可在 www.cellnopt.org 上获得。

联系方式

saezrodriguez@ebi.ac.uk

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fce/3436796/f32f2c857445/bts363f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验