Department of Information Engineering, University of Padova, Padova, 31050, Italy.
Bioinformatics. 2012 Sep 15;28(18):2311-7. doi: 10.1093/bioinformatics/bts363. Epub 2012 Jun 25.
Recent developments in experimental methods facilitate increasingly larger signal transduction datasets. Two main approaches can be taken to derive a mathematical model from these data: training a network (obtained, e.g., from literature) to the data, or inferring the network from the data alone. Purely data-driven methods scale up poorly and have limited interpretability, whereas literature-constrained methods cannot deal with incomplete networks.
We present an efficient approach, implemented in the R package CNORfeeder, to integrate literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. Our method extends a given network with links derived from the data via various inference methods, and uses information on physical interactions of proteins to guide and validate the integration of links. We apply CNORfeeder to a network of growth and inflammatory signalling. We obtain a model with superior data fit in the human liver cancer HepG2 and propose potential missing pathways.
CNORfeeder is in the process of being submitted to Bioconductor and in the meantime available at www.cellnopt.org.
Supplementary data are available at Bioinformatics online.
实验方法的最新进展使得信号转导数据集越来越大。从这些数据中推导出数学模型有两种主要方法:将网络(例如,从文献中获得)训练到数据中,或者仅从数据中推断网络。纯数据驱动的方法扩展效果不佳,并且可解释性有限,而受文献限制的方法则无法处理不完整的网络。
我们提出了一种有效的方法,该方法在 R 包 CNORfeeder 中实现,用于从扰动实验中推断信号网络,该方法将受文献约束和数据驱动的方法结合起来,通过各种推理方法从数据中推导出链接,并利用蛋白质物理相互作用的信息来指导和验证链接的集成。我们将 CNORfeeder 应用于生长和炎症信号网络。我们得到了一个在人肝癌 HepG2 中具有更好数据拟合的模型,并提出了潜在的缺失途径。
CNORfeeder 正在提交给 Bioconductor,同时可在 www.cellnopt.org 上获得。
补充数据可在 Bioinformatics 在线获得。