Institut Curie, F-91405 Orsay, France.
CNRS, UMR3306, F-91405 Orsay, France.
Nat Commun. 2016 Oct 24;7:13233. doi: 10.1038/ncomms13233.
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous.
糖酵解酶甘油醛-3-磷酸脱氢酶(GAPDH)促进神经元中的快速轴突运输。然而,由于 GAPDH 本身不产生 ATP,因此尚不清楚糖酵解本身是否足以推动囊泡。尽管已经鉴定出许多调节运输的蛋白质,但神经元中运输囊泡的分子组成尚未完全阐明。在这里,我们选择性地富集运动囊泡并进行定量蛋白质组学分析。除了预期的分子马达和囊泡蛋白外,我们还发现糖酵解酶的全部都有富集。使用生化方法和超分辨率显微镜,我们观察到大多数糖酵解酶与囊泡选择性地结合,并促进神经元中囊泡的运输。最后,我们提供的证据表明,鼠脑囊泡可以从 ADP 和葡萄糖中产生 ATP,并在体外重建的天然囊泡运输测定中显示出运动。我们得出结论,囊泡沿着微管的运输可以是自主的。