Okamoto Akihisa, Tanaka Masahiro, Sumi Chisato, Oku Kanako, Kusunoki Munenori, Nishi Kenichiro, Matsuo Yoshiyuki, Takenaga Keizo, Shingu Koh, Hirota Kiichi
Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.
Department of Life Science, Shimane University School of Medicine, Izumo, Japan.
BMC Anesthesiol. 2016 Oct 24;16(1):104. doi: 10.1186/s12871-016-0273-3.
The local anesthetic lidocaine can affect intra- and extra-cellular signaling pathways in both neuronal and non-neuronal cells, resulting in long-term modulation of biological functions, including cell growth and death. Indeed, lidocaine was shown to induce necrosis and apoptosis in vitro. While several studies have suggested that lidocaine-induced apoptosis is mitochondrial pathway-dependent, it remains unclear whether reactive oxygen species (ROS) are involved in this process and whether the observed cell death can be prevented by antioxidant treatment.
The effects of lidocaine and antioxidants on cell viability and death were evaluated using SH-SY5Y cells, HeLa cells, and HeLa cell derivatives. Cell viability was examined via MTS/PES ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]/phenazine ethosulfate) assay. Meanwhile, cell apoptosis and necrosis were evaluated using a cell death detection assay with Annexin V-FITC and PI staining, as well as by assaying for caspase-3/7 and caspase-9 activity, and by measuring the release of lactate dehydrogenase, respectively. Mitochondrial transmembrane potential (ΔΨm) was assessed using the fluorescent probe tetramethylrhodamine ethyl ester.
Lidocaine treatment resulted in suppression of the mitochondrial electron transport chain and subsequent attenuation of mitochondrial membrane potential, as well as enhanced ROS production, activation of caspase-3/7 and caspase-9, and induction of apoptosis and necrosis in SH-SY5Y cells in a dose- and time-dependent manner. Likewise, the anesthetics mepivacaine and bupivacaine also induced apoptosis in SH-SY5Y cells. Notably, the antioxidants N-acetyl cysteine (NAC) and Trolox successfully scavenged the mitochondria-derived ROS and suppressed local lidocaine-induced cell death.
Our findings demonstrate that the local anesthetics lidocaine, mepivacaine, and bupivacaine inhibited the activity of mitochondria and induced apoptosis and necrosis in a dose-dependent manner. Furthermore, they demonstrate that treatment with the antioxidants NAC, Trolox, and GGA resulted in preservation of mitochondrial voltage and inhibition of apoptosis via suppression of caspase activation.
局部麻醉药利多卡因可影响神经元和非神经元细胞的细胞内和细胞外信号通路,导致包括细胞生长和死亡在内的生物学功能的长期调节。事实上,利多卡因在体外可诱导坏死和凋亡。虽然多项研究表明利多卡因诱导的凋亡是线粒体途径依赖性的,但尚不清楚活性氧(ROS)是否参与此过程,以及抗氧化剂治疗能否预防观察到的细胞死亡。
使用SH-SY5Y细胞、HeLa细胞和HeLa细胞衍生物评估利多卡因和抗氧化剂对细胞活力和死亡的影响。通过MTS/PES([3-(4,5-二甲基噻唑-2-基)-5-(3-羧甲氧基苯基)-2-(4-磺基苯基)-2H-四唑鎓,内盐]/吩嗪硫酸乙酯)测定法检测细胞活力。同时,分别使用Annexin V-FITC和PI染色的细胞死亡检测测定法、检测caspase-3/7和caspase-9活性以及测量乳酸脱氢酶的释放来评估细胞凋亡和坏死。使用荧光探针四甲基罗丹明乙酯评估线粒体跨膜电位(ΔΨm)。
利多卡因处理导致SH-SY5Y细胞中线粒体电子传递链的抑制以及随后线粒体膜电位的减弱,以及ROS产生增加、caspase-3/7和caspase-9的激活,以及凋亡和坏死的诱导,呈剂量和时间依赖性。同样,麻醉药甲哌卡因和布比卡因也诱导SH-SY5Y细胞凋亡。值得注意的是,抗氧化剂N-乙酰半胱氨酸(NAC)和Trolox成功清除了线粒体衍生的ROS并抑制了局部利多卡因诱导的细胞死亡。
我们的研究结果表明,局部麻醉药利多卡因、甲哌卡因和布比卡因以剂量依赖性方式抑制线粒体活性并诱导凋亡和坏死。此外,它们表明用抗氧化剂NAC、Trolox和GGA治疗可通过抑制caspase激活来维持线粒体电压并抑制凋亡。