Kusunoki Munenori, Hirota Kiichi, Shoji Tomohiro, Uba Takeo, Matsuo Yoshiyuki, Hayashi Mikio
Department of Anesthesiology, Kansai Medical University, Hirakata, Osaka, Japan.
Department of Pain Clinic Medicine, Minamiuonuma City Hospital, Minamiuonuma, Niigata, Japan.
FEBS Open Bio. 2025 Apr;15(4):634-646. doi: 10.1002/2211-5463.13960. Epub 2024 Dec 20.
Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS). Dexmedetomidine (DEX) decreases insulin release and affects glucose metabolism; however, the specific mechanism underlying this phenomenon remains largely unknown. Thus, we investigated the effect and mechanism of DEX on insulin secretion using mouse and rat pancreatic β-cell-derived MIN6 and INS-1 cell lines and primary pancreatic β-cells/islets extracted from mice. The amount of insulin secreted into the culture medium was determined using an enzyme-linked immunosorbent assay. Cell viability, cytotoxicity, and electrophysiological effects were investigated. Clinically relevant doses of DEX suppressed GSIS in MIN6 cells, INS-1 cells, and pancreatic β-cells/islets. Furthermore, DEX suppressed insulin secretion facilitated by insulinotropic factors. There was no significant difference in oxygen consumption rate, intracellular ATP levels, or caspase-3/7 activity. Electrophysiological evaluation using the patch-clamp method showed that DEX did not affect ATP-sensitive potassium (K) channels, voltage-dependent potassium channels, or voltage-gated calcium channels. We demonstrated that clinically relevant doses of DEX significantly suppressed GSIS. These findings suggest that DEX inhibits a signaling pathway via α2-adrenoceptor or insulin vesicle exocytosis, resulting in GSIS suppression. Our results support the hypothesis that DEX suppresses insulin secretion and reveal some underlying mechanisms.
在重症监护中,包括围手术期护理,适当的血糖控制对于患者管理至关重要,并且会影响患者预后。血糖浓度决定胰岛素分泌和敏感性,并影响葡萄糖代谢之间的复杂平衡。人体和其他动物研究表明,围手术期药物,包括挥发性麻醉剂和静脉麻醉剂,会影响葡萄糖刺激的胰岛素分泌(GSIS)。右美托咪定(DEX)可减少胰岛素释放并影响葡萄糖代谢;然而,这一现象背后的具体机制在很大程度上仍不清楚。因此,我们使用小鼠和大鼠胰腺β细胞来源的MIN6和INS-1细胞系以及从小鼠提取的原代胰腺β细胞/胰岛,研究了DEX对胰岛素分泌的影响及其机制。使用酶联免疫吸附测定法测定分泌到培养基中的胰岛素量。研究了细胞活力、细胞毒性和电生理效应。临床相关剂量的DEX抑制了MIN6细胞、INS-1细胞和胰腺β细胞/胰岛中的GSIS。此外,DEX抑制了促胰岛素因子促进的胰岛素分泌。耗氧率、细胞内ATP水平或caspase-3/7活性没有显著差异。使用膜片钳方法进行的电生理评估表明,DEX不影响ATP敏感性钾(K)通道、电压依赖性钾通道或电压门控钙通道。我们证明,临床相关剂量的DEX显著抑制了GSIS。这些发现表明,DEX通过α2-肾上腺素能受体或胰岛素囊泡胞吐作用抑制信号通路,从而导致GSIS受到抑制。我们的结果支持DEX抑制胰岛素分泌的假说,并揭示了一些潜在机制。