Perez-Castro Rosalia, Patel Sohin, Garavito-Aguilar Zayra V, Rosenberg Andrew, Recio-Pinto Esperanza, Zhang Jin, Blanck Thomas J J, Xu Fang
Department of Anesthesiology, NYU School of Medicine, New York, NY, USA.
Anesth Analg. 2009 Mar;108(3):997-1007. doi: 10.1213/ane.0b013e31819385e1.
In addition to inhibiting the excitation conduction process in peripheral nerves, local anesthetics (LAs) cause toxic effects on the central nervous system, cardiovascular system, neuromuscular junction, and cell metabolism. Different postoperative neurological complications are ascribed to the cytotoxicity of LAs, but the underlying mechanisms remain unclear. Because the clinical concentrations of LAs far exceed their EC(50) for inhibiting ion channel activity, ion channel block alone might not be sufficient to explain LA-induced cell death. However, it may contribute to cell death in combination with other actions. In this study, we compared the cytotoxicity of six frequently used LAs and will discuss the possible mechanism(s) underlying their toxicity.
In human SH-SY5Y neuroblastoma cells, viability upon exposure to six LAs (bupivacaine, ropivacaine, mepivacaine, lidocaine, procaine, and chloroprocaine) was quantitatively determined by the MTT-(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-odium bromide) colorimetry assay and qualitatively confirmed by fluorescence imaging, using the LIVE/DEAD assay reagents (calcein/AM and ethidium homodimer-1). In addition, apoptotic activity was assessed by measuring the activation of caspase-3/-7 by imaging using a fluorescent caspase inhibitor (FLICA). Furthermore, LA effects on depolarization- and carbachol-stimulated intracellular Ca(2+)-responses were also evaluated.
LAs can cause rapid cell death, which is primarily due to necrosis. Lidocaine and bupivacaine can trigger apoptosis with either increased time of exposure or increased concentration. These effects might be related to postoperative neurologic injury. Lidocaine, linked to the highest incidence of transient neurological symptoms, was not the most toxic LA, whereas bupivacaine, a drug causing a very low incidence of transient neurological symptoms, was the most toxic LA in our cell model. This suggests that cytotoxicity-induced nerve injury might have different mechanisms for different LAs and different target(s) other than neurons.
局部麻醉药(LAs)除了抑制周围神经的兴奋传导过程外,还会对中枢神经系统、心血管系统、神经肌肉接头和细胞代谢产生毒性作用。不同的术后神经并发症归因于局部麻醉药的细胞毒性,但其潜在机制仍不清楚。由于局部麻醉药的临床浓度远远超过其抑制离子通道活性的半数有效浓度(EC50),仅离子通道阻滞可能不足以解释局部麻醉药诱导的细胞死亡。然而,它可能与其他作用共同导致细胞死亡。在本研究中,我们比较了六种常用局部麻醉药的细胞毒性,并将讨论其毒性的可能机制。
在人SH-SY5Y神经母细胞瘤细胞中,通过MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑)比色法对暴露于六种局部麻醉药(布比卡因、罗哌卡因、甲哌卡因、利多卡因、普鲁卡因和氯普鲁卡因)后的细胞活力进行定量测定,并使用活/死检测试剂(钙黄绿素/AM和碘化丙啶同型二聚体-1)通过荧光成像进行定性确认。此外,通过使用荧光半胱天冬酶抑制剂(FLICA)成像测量半胱天冬酶-3/-7的激活来评估凋亡活性。此外,还评估了局部麻醉药对去极化和卡巴胆碱刺激的细胞内Ca2+反应的影响。
1)经过10分钟的处理后,所有六种局部麻醉药均以浓度依赖性方式降低细胞活力。它们的杀伤效力为普鲁卡因≤甲哌卡因<利多卡因<氯普鲁卡因<罗哌卡因<布比卡因(基于半数致死浓度(LD50),即50%细胞死亡时的浓度)。在这六种局部麻醉药中,只有布比卡因和利多卡因随着浓度增加杀死所有细胞。2)布比卡因和利多卡因均激活半胱天冬酶-3/-7。半胱天冬酶激活所需的利多卡因水平高于布比卡因。此外,布比卡因引起的半胱天冬酶激活比利多卡因慢。高浓度的利多卡因会立即引起半胱天冬酶激活,但在低于10 mM的浓度下不会引起明显的半胱天冬酶激活。3)普鲁卡因和氯普鲁卡因以与先前观察到的布比卡因、罗哌卡因、甲哌卡因和利多卡因类似的方式浓度依赖性地抑制去极化或受体激活引起的细胞溶质Ca2+反应。没有一种局部麻醉药导致基础和Ca2+诱发的细胞溶质Ca2+水平显著升高。
局部麻醉药可导致快速细胞死亡,这主要是由于坏死。利多卡因和布比卡因可通过增加暴露时间或浓度来触发凋亡。这些作用可能与术后神经损伤有关。利多卡因与短暂性神经症状的最高发生率相关,但不是毒性最强的局部麻醉药,而布比卡因是一种引起短暂性神经症状发生率非常低的药物,在我们的细胞模型中是毒性最强的局部麻醉药。这表明细胞毒性诱导的神经损伤可能对不同的局部麻醉药有不同的机制,并且除神经元外还有不同的靶点。