Miao Yinglong, McCammon J Andrew
Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093;
Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. doi: 10.1073/pnas.1614538113. Epub 2016 Oct 10.
G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.
G蛋白偶联受体(GPCRs)能识别从反向激动剂到部分激动剂和完全激动剂等广泛不同效力的配体,这些配体在不同水平上转导细胞信号。然而,这种分级激活的机制仍不清楚。我们使用了既能实现无约束增强采样又能进行自由能计算的高斯加速分子动力学(GaMD)方法,进行了广泛的GaMD模拟(总计约19微秒),以研究在存在或不存在G蛋白模拟纳米抗体的情况下,与完全激动剂iperoxo(IXO)、部分激动剂槟榔碱(ARC)和反向激动剂3-奎宁环基苯甲酸酯(QNB)结合的M型毒蕈碱GPCR的结构动力学。在受体-纳米抗体复合物中,IXO结合导致蛋白质偶联界面的波动比ARC更高,特别是在GPCR激活的关键要素——受体跨膜螺旋5(TM5)、TM6和TM7细胞内结构域,但与ARC相比,由于结合更强,受体细胞外区域的灵活性较低。在正构口袋中发现ARC有两种不同的结合姿势。去除纳米抗体导致GPCR失活,其特征是TM6细胞内末端向内移动。对于与IXO和ARC结合的M受体,确定了不同的低能中间构象状态。在部分激动剂ARC与M受体结合的情况下,在单个全原子GPCR模拟中观察到了正构配体的解离和结合。这项研究证明了GaMD在探索大型生物分子自由能景观方面的适用性,并且这些模拟为GPCR功能机制提供了重要见解。