Suppr超能文献

毒蕈碱型 G 蛋白偶联受体的分级激活与自由能景观

Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.

作者信息

Miao Yinglong, McCammon J Andrew

机构信息

Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093;

Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. doi: 10.1073/pnas.1614538113. Epub 2016 Oct 10.

Abstract

G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.

摘要

G蛋白偶联受体(GPCRs)能识别从反向激动剂到部分激动剂和完全激动剂等广泛不同效力的配体,这些配体在不同水平上转导细胞信号。然而,这种分级激活的机制仍不清楚。我们使用了既能实现无约束增强采样又能进行自由能计算的高斯加速分子动力学(GaMD)方法,进行了广泛的GaMD模拟(总计约19微秒),以研究在存在或不存在G蛋白模拟纳米抗体的情况下,与完全激动剂iperoxo(IXO)、部分激动剂槟榔碱(ARC)和反向激动剂3-奎宁环基苯甲酸酯(QNB)结合的M型毒蕈碱GPCR的结构动力学。在受体-纳米抗体复合物中,IXO结合导致蛋白质偶联界面的波动比ARC更高,特别是在GPCR激活的关键要素——受体跨膜螺旋5(TM5)、TM6和TM7细胞内结构域,但与ARC相比,由于结合更强,受体细胞外区域的灵活性较低。在正构口袋中发现ARC有两种不同的结合姿势。去除纳米抗体导致GPCR失活,其特征是TM6细胞内末端向内移动。对于与IXO和ARC结合的M受体,确定了不同的低能中间构象状态。在部分激动剂ARC与M受体结合的情况下,在单个全原子GPCR模拟中观察到了正构配体的解离和结合。这项研究证明了GaMD在探索大型生物分子自由能景观方面的适用性,并且这些模拟为GPCR功能机制提供了重要见解。

相似文献

1
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. doi: 10.1073/pnas.1614538113. Epub 2016 Oct 10.
2
Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy.
Mol Cell. 2019 Jul 11;75(1):53-65.e7. doi: 10.1016/j.molcel.2019.04.028. Epub 2019 May 15.
3
Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3036-3041. doi: 10.1073/pnas.1800756115. Epub 2018 Mar 5.
4
Ligand-Triggered Structural Changes in the M Muscarinic Acetylcholine Receptor.
J Chem Inf Model. 2018 May 29;58(5):1074-1082. doi: 10.1021/acs.jcim.8b00108. Epub 2018 May 2.
5
New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo.
Biochem Pharmacol. 2014 Aug 1;90(3):307-19. doi: 10.1016/j.bcp.2014.05.012. Epub 2014 May 23.
6
7
Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.
Nature. 2012 Jan 25;482(7386):547-51. doi: 10.1038/nature10753.
8
Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics Simulations.
J Chem Theory Comput. 2019 May 14;15(5):3354-3361. doi: 10.1021/acs.jctc.9b00118. Epub 2019 Apr 4.
10
Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor.
Br J Pharmacol. 2013 May;169(2):357-70. doi: 10.1111/bph.12003.

引用本文的文献

1
Mechanistic studies of small molecule ligands selective to RNA single G bulges.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf559.
2
Visualizing agonist-induced M2 receptor activation regulated by aromatic ring dynamics.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2418559122. doi: 10.1073/pnas.2418559122. Epub 2025 Mar 7.
4
Intracellular Pocket Conformations Determine Signaling Efficacy through the μ Opioid Receptor.
J Chem Inf Model. 2025 Feb 10;65(3):1465-1475. doi: 10.1021/acs.jcim.4c01437. Epub 2025 Jan 17.
5
Intracellular pocket conformations determine signaling efficacy through the opioid receptor.
bioRxiv. 2024 Dec 7:2024.04.03.588021. doi: 10.1101/2024.04.03.588021.
6
Activation of polycystin-1 signaling by binding of stalk-derived peptide agonists.
Elife. 2024 Oct 7;13:RP95992. doi: 10.7554/eLife.95992.
7
Distinct binding conformations of epinephrine with α- and β-adrenergic receptors.
Exp Mol Med. 2024 Sep;56(9):1952-1966. doi: 10.1038/s12276-024-01296-x. Epub 2024 Sep 2.

本文引用的文献

1
Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.
Nature. 2016 Jul 7;535(7610):182-6. doi: 10.1038/nature18324. Epub 2016 Jun 29.
2
G-protein coupled receptors: advances in simulation and drug discovery.
Curr Opin Struct Biol. 2016 Dec;41:83-89. doi: 10.1016/j.sbi.2016.06.008. Epub 2016 Jun 22.
3
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
4
5
Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation.
J Chem Theory Comput. 2015 Aug 11;11(8):3584-3595. doi: 10.1021/acs.jctc.5b00436. Epub 2015 Jul 14.
6
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.
7
Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation.
J Chem Theory Comput. 2014 Jul 8;10(7):2677-2689. doi: 10.1021/ct500090q. Epub 2014 May 1.
8
Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.
J Biol Chem. 2014 Aug 29;289(35):24347-65. doi: 10.1074/jbc.M114.559294. Epub 2014 Jul 14.
9
Activation and allosteric modulation of a muscarinic acetylcholine receptor.
Nature. 2013 Dec 5;504(7478):101-6. doi: 10.1038/nature12735. Epub 2013 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验