Center for Computational Biology, University of Kansas, Lawrence, KS 66047;
Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3036-3041. doi: 10.1073/pnas.1800756115. Epub 2018 Mar 5.
Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.
蛋白质-蛋白质的结合是细胞信号转导过程中的关键。然而,由于时间尺度的限制,蛋白质-蛋白质结合的分子动力学(MD)模拟具有挑战性。特别是,与医学上重要的 G 蛋白偶联受体(GPCR)与细胞内信号蛋白的结合尚未通过 MD 进行模拟。在这里,我们报告了使用强大的高斯加速 MD(GaMD)方法成功模拟 G 蛋白模拟纳米体与 M 毒蕈碱 GPCR 的结合。通过超过 4500 ns 的长时 GaMD 模拟,观察到纳米体结合到受体细胞内的 G 蛋白偶联结合位点,与 X 射线结构相比,纳米体核心结构域的最小 rmsd 为 2.48 Å。纳米体的结合变构关闭了正位配体结合口袋,这与最近的实验结果一致。在没有纳米体结合的情况下,受体正位口袋采样开放和完全开放构象。GaMD 模拟揭示了在 M 受体与纳米体结合过程中存在两个低能量的中间状态。灵活的受体细胞内环在纳米体识别和结合中提供了显著的静电、极性和疏水性残基相互作用。这些模拟为 GPCR-纳米体结合的机制提供了重要的见解,并证明了 GaMD 在模拟动态蛋白质-蛋白质相互作用中的适用性。