Suppr超能文献

G 蛋白模拟纳米抗体与毒蕈碱型 G 蛋白偶联受体结合的机制。

Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

机构信息

Center for Computational Biology, University of Kansas, Lawrence, KS 66047;

Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3036-3041. doi: 10.1073/pnas.1800756115. Epub 2018 Mar 5.

Abstract

Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

摘要

蛋白质-蛋白质的结合是细胞信号转导过程中的关键。然而,由于时间尺度的限制,蛋白质-蛋白质结合的分子动力学(MD)模拟具有挑战性。特别是,与医学上重要的 G 蛋白偶联受体(GPCR)与细胞内信号蛋白的结合尚未通过 MD 进行模拟。在这里,我们报告了使用强大的高斯加速 MD(GaMD)方法成功模拟 G 蛋白模拟纳米体与 M 毒蕈碱 GPCR 的结合。通过超过 4500 ns 的长时 GaMD 模拟,观察到纳米体结合到受体细胞内的 G 蛋白偶联结合位点,与 X 射线结构相比,纳米体核心结构域的最小 rmsd 为 2.48 Å。纳米体的结合变构关闭了正位配体结合口袋,这与最近的实验结果一致。在没有纳米体结合的情况下,受体正位口袋采样开放和完全开放构象。GaMD 模拟揭示了在 M 受体与纳米体结合过程中存在两个低能量的中间状态。灵活的受体细胞内环在纳米体识别和结合中提供了显著的静电、极性和疏水性残基相互作用。这些模拟为 GPCR-纳米体结合的机制提供了重要的见解,并证明了 GaMD 在模拟动态蛋白质-蛋白质相互作用中的适用性。

相似文献

2
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.毒蕈碱型 G 蛋白偶联受体的分级激活与自由能景观
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. doi: 10.1073/pnas.1614538113. Epub 2016 Oct 10.
6
Activation and dynamic network of the M2 muscarinic receptor.M2 毒蕈碱型乙酰胆碱受体的激活和动态网络。
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10982-7. doi: 10.1073/pnas.1309755110. Epub 2013 Jun 18.
7
Gaussian accelerated molecular dynamics for elucidation of drug pathways.高斯加速分子动力学阐明药物途径。
Expert Opin Drug Discov. 2018 Nov;13(11):1055-1065. doi: 10.1080/17460441.2018.1538207. Epub 2018 Oct 29.
8
10
Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors.G蛋白偶联受体中电压感应的结构机制
Structure. 2016 Jun 7;24(6):997-1007. doi: 10.1016/j.str.2016.04.007. Epub 2016 May 19.

引用本文的文献

3

本文引用的文献

1
5
Gaussian Accelerated Molecular Dynamics in NAMD.NAMD中的高斯加速分子动力学
J Chem Theory Comput. 2017 Jan 10;13(1):9-19. doi: 10.1021/acs.jctc.6b00931. Epub 2016 Dec 30.
6
Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.毒蕈碱型 G 蛋白偶联受体的分级激活与自由能景观
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12162-12167. doi: 10.1073/pnas.1614538113. Epub 2016 Oct 10.
10
G-protein coupled receptors: advances in simulation and drug discovery.G蛋白偶联受体:模拟与药物发现的进展
Curr Opin Struct Biol. 2016 Dec;41:83-89. doi: 10.1016/j.sbi.2016.06.008. Epub 2016 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验