Nowack Eva C M, Price Dana C, Bhattacharya Debashish, Singer Anna, Melkonian Michael, Grossman Arthur R
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305; Department of Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Dusseldorf, Germany;
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12214-12219. doi: 10.1073/pnas.1608016113. Epub 2016 Oct 10.
Plastids, the photosynthetic organelles, originated >1 billion y ago via the endosymbiosis of a cyanobacterium. The resulting proliferation of primary producers fundamentally changed global ecology. Endosymbiotic gene transfer (EGT) from the intracellular cyanobacterium to the nucleus is widely recognized as a critical factor in the evolution of photosynthetic eukaryotes. The contribution of horizontal gene transfers (HGTs) from other bacteria to plastid establishment remains more controversial. A novel perspective on this issue is provided by the amoeba Paulinella chromatophora, which contains photosynthetic organelles (chromatophores) that are only 60-200 million years old. Chromatophore genome reduction entailed the loss of many biosynthetic pathways including those for numerous amino acids and cofactors. How the host cell compensates for these losses remains unknown, because the presence of bacteria in all available P. chromatophora cultures excluded elucidation of the full metabolic capacity and occurrence of HGT in this species. Here we generated a high-quality transcriptome and draft genome assembly from the first bacteria-free P. chromatophora culture to deduce rules that govern organelle integration into cellular metabolism. Our analyses revealed that nuclear and chromatophore gene inventories provide highly complementary functions. At least 229 nuclear genes were acquired via HGT from various bacteria, of which only 25% putatively arose through EGT from the chromatophore genome. Many HGT-derived bacterial genes encode proteins that fill gaps in critical chromatophore pathways/processes. Our results demonstrate a dominant role for HGT in compensating for organelle genome reduction and suggest that phagotrophy may be a major driver of HGT.
质体作为光合细胞器,起源于10亿多年前,是由一种蓝细菌内共生形成的。由此产生的初级生产者的增殖从根本上改变了全球生态。从细胞内蓝细菌到细胞核的内共生基因转移(EGT)被广泛认为是光合真核生物进化的关键因素。来自其他细菌的水平基因转移(HGT)对质体形成的贡献仍存在更多争议。变形虫“嗜色保罗虫”(Paulinella chromatophora)为这个问题提供了一个新视角,它含有仅在6亿至2亿年前形成的光合细胞器(色素体)。色素体基因组的缩减导致许多生物合成途径的丧失,包括众多氨基酸和辅因子的合成途径。宿主细胞如何弥补这些损失仍然未知,因为在所有现有的嗜色保罗虫培养物中都存在细菌,这排除了对该物种完整代谢能力和HGT发生情况的阐明。在这里,我们从首个无细菌的嗜色保罗虫培养物中生成了高质量的转录组和基因组草图组装,以推断控制细胞器整合到细胞代谢中的规则。我们的分析表明,细胞核和色素体基因库提供了高度互补的功能。至少229个核基因是通过从各种细菌进行HGT获得的,其中只有25%可能是通过色素体基因组的EGT产生的。许多源自HGT的细菌基因编码的蛋白质填补了关键色素体途径/过程中的空白。我们的结果证明了HGT在补偿细胞器基因组缩减方面的主导作用,并表明吞噬营养可能是HGT的主要驱动力。