Department of Biology, University of Padova, Padua, Italy.
Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland.
Plant Cell Environ. 2019 May;42(5):1590-1602. doi: 10.1111/pce.13493. Epub 2018 Dec 18.
Photosynthetic organisms support cell metabolism by harvesting sunlight and driving the electron transport chain at the level of thylakoid membranes. Excitation energy and electron flow in the photosynthetic apparatus is continuously modulated in response to dynamic environmental conditions. Alternative electron flow around photosystem I plays a seminal role in this regulation contributing to photoprotection by mitigating overreduction of the electron carriers. Different pathways of alternative electron flow coexist in the moss Physcomitrella patens, including cyclic electron flow mediated by the PGRL1/PGR5 complex and pseudo-cyclic electron flow mediated by the flavodiiron proteins FLV. In this work, we generated P. patens plants carrying both pgrl1 and flva knock-out mutations. A comparative analysis of the WT, pgrl1, flva, and pgrl1 flva lines suggests that cyclic and pseudo-cyclic processes have a synergic role in the regulation of photosynthetic electron transport. However, although both contribute to photosystem I protection from overreduction by modulating electron flow following changes in environmental conditions, FLV activity is particularly relevant in the first seconds after a light change whereas PGRL1 has a major role upon sustained strong illumination.
光合生物通过捕获阳光并在类囊体膜水平上驱动电子传递链来支持细胞代谢。在响应动态环境条件下,光合作用装置中的激发能和电子流不断被调节。光系统 I 周围的替代电子流在这种调节中起着重要作用,通过减轻电子载体的过度还原来促进光保护。在苔藓植物Physcomitrella patens 中,替代电子流的不同途径共存,包括由 PGRL1/PGR5 复合物介导的循环电子流和由黄素铁蛋白 FLV 介导的拟循环电子流。在这项工作中,我们生成了同时携带 pgrl1 和 flva 敲除突变的 P. patens 植物。对 WT、pgrl1、flva 和 pgrl1 flva 系的比较分析表明,循环和拟循环过程在光合作用电子传递的调节中具有协同作用。然而,尽管它们都通过调节环境条件变化后的电子流来促进光系统 I 免受过度还原,但 FLV 活性在光变化后的最初几秒钟特别相关,而 PGRL1 在持续强烈光照下具有主要作用。