Edgar Steven, Li Fu-Shuang, Qiao Kangjian, Weng Jing-Ke, Stephanopoulos Gregory
Whitehead Institute for Biomedical Research , 9 Cambridge Center, Cambridge, Massachusetts 02142, United States.
ACS Synth Biol. 2017 Feb 17;6(2):201-205. doi: 10.1021/acssynbio.6b00206. Epub 2016 Nov 4.
Attempts at microbial production of the chemotherapeutic agent Taxol (paclitaxel) have met with limited success, due largely to a pathway bottleneck resulting from poor product selectivity of the first hydroxylation step, catalyzed by taxadien-5a-hydroxylase (CYP725A4). Here, we systematically investigate three methodologies, terpene cyclase engineering, P450 engineering, and hydrolase-enzyme screening to overcome this early pathway selectivity bottleneck. We demonstrate that engineering of Taxadiene Synthase, upstream of the promiscuous oxidation step, acts as a practical method for selectivity improvement. Through mutagenesis we achieve a 2.4-fold improvement in yield and selectivity for an alternative cyclization product, taxa-4(20)-11(12)-diene; and for the Taxol precursor taxadien-5α-ol, when coexpressed with CYP725A4. This works lays the foundation for the elucidation, engineering, and improved production of Taxol and early Taxol precursors.
尝试通过微生物生产化疗药物紫杉醇(泰素)取得的成功有限,这主要归因于由紫杉二烯-5α-羟化酶(CYP725A4)催化的首个羟基化步骤产物选择性不佳所导致的途径瓶颈。在此,我们系统地研究了三种方法,即萜类环化酶工程、细胞色素P450工程和水解酶筛选,以克服这一早期途径选择性瓶颈。我们证明,在混杂氧化步骤上游对紫杉二烯合酶进行工程改造,是提高选择性的一种实用方法。通过诱变,我们使与CYP725A4共表达时替代环化产物紫杉-4(20)-11(12)-二烯以及紫杉醇前体紫杉二烯-5α-醇的产量和选择性提高了2.4倍。这项工作为阐明、改造和提高紫杉醇及早期紫杉醇前体的产量奠定了基础。