Suppr超能文献

焓-熵补偿:溶剂化作用

Enthalpy-entropy compensation: the role of solvation.

作者信息

Dragan Anatoliy I, Read Christopher M, Crane-Robinson Colyn

机构信息

Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka St., Kiev, 01601, Ukraine.

Institute of Molecular Biology and Genetics, NASU, 150, Zabolotnogo St., Kiev, 03680, Ukraine.

出版信息

Eur Biophys J. 2017 May;46(4):301-308. doi: 10.1007/s00249-016-1182-6. Epub 2016 Oct 28.

Abstract

Structural modifications to interacting systems frequently lead to changes in both the enthalpy (heat) and entropy of the process that compensate each other, so that the Gibbs free energy is little changed: a major barrier to the development of lead compounds in drug discovery. The conventional explanation for such enthalpy-entropy compensation (EEC) is that tighter contacts lead to a more negative enthalpy but increased molecular constraints, i.e., a compensating conformational entropy reduction. Changes in solvation can also contribute to EEC but this contribution is infrequently discussed. We review long-established and recent cases of EEC and conclude that the large fluctuations in enthalpy and entropy observed are too great to be a result of only conformational changes and must result, to a considerable degree, from variations in the amounts of water immobilized or released on forming complexes. Two systems exhibiting EEC show a correlation between calorimetric entropies and local mobilities, interpreted to mean conformational control of the binding entropy/free energy. However, a substantial contribution from solvation gives the same effect, as a consequence of a structural link between the amount of bound water and the protein flexibility. Only by assuming substantial changes in solvation-an intrinsically compensatory process-can a more complete understanding of EEC be obtained. Faced with such large, and compensating, changes in the enthalpies and entropies of binding, the best approach to engineering elevated affinities must be through the addition of ionic links, as they generate increased entropy without affecting the enthalpy.

摘要

相互作用体系的结构修饰常常会导致过程的焓(热)和熵都发生变化,且二者相互补偿,使得吉布斯自由能变化不大:这是药物研发中先导化合物开发的一个主要障碍。对于这种焓 - 熵补偿(EEC)的传统解释是,更紧密的接触会导致焓更负,但分子约束增加,即构象熵减少起到补偿作用。溶剂化的变化也可能对EEC有贡献,但这方面的贡献鲜少被讨论。我们回顾了EEC的长期和近期案例,并得出结论,观察到的焓和熵的大幅波动太大,不可能仅仅是构象变化的结果,在很大程度上必然是由于形成复合物时固定或释放的水量变化所致。两个表现出EEC的体系显示出量热熵与局部迁移率之间的相关性,这被解释为对结合熵/自由能的构象控制。然而,由于结合水量与蛋白质灵活性之间的结构联系,溶剂化的显著贡献也会产生相同的效果。只有假设溶剂化发生实质性变化(这是一个本质上具有补偿性的过程),才能更全面地理解EEC。面对结合焓和熵如此大且相互补偿的变化,提高亲和力的最佳工程方法必须是通过添加离子键,因为它们能增加熵而不影响焓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37a2/5384952/1cbb66cf9e03/249_2016_1182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验