Rolvien Tim, Nagel Florian, Milovanovic Petar, Wuertz Sven, Marshall Robert Percy, Jeschke Anke, Schmidt Felix N, Hahn Michael, Witten P Eckhard, Amling Michael, Busse Björn
Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.
Gesellschaft für Marine Aquakultur mbh, Hafentörn 3, 25761 Büsum, Germany.
Proc Biol Sci. 2016 Oct 26;283(1841). doi: 10.1098/rspb.2016.1550.
European eels (Anguilla anguilla) undertake an impressive 5 000 km long migration from European fresh waters through the North Atlantic Ocean to the Sargasso Sea. Along with sexual maturation, the eel skeleton undergoes a remarkable morphological transformation during migration, where a hitherto completely obscure bone loss phenomenon occurs. To unravel mechanisms of the maturation-related decay of the skeleton, we performed a multiscale assessment of eels' bones at different life-cycle stages. Accordingly, the skeleton reflects extensive bone loss that is mediated via multinucleated bone-resorbing osteoclasts, while other resorption mechanisms such as osteocytic osteolysis or matrix demineralization were not observed. Preserving mechanical stability and releasing minerals for energy metabolism are two mutually exclusive functions of the skeleton that are orchestrated in eels through the presence of two spatially segregated hard tissues: cellular bone and acellular notochord. The cellular bone serves as a source of mineral release following osteoclastic resorption, whereas the mineralized notochord sheath, which is inaccessible for resorption processes due to an unmineralized cover layer, ensures sufficient mechanical stability as a part of the notochord sheath. Clearly, an eel's skeleton is structurally optimized to meet the metabolic challenge of fasting and simultaneous sexual development during an exhausting journey to spawning areas, while the function of the vertebral column is maintained to achieve this goal.
欧洲鳗鲡(Anguilla anguilla)会从欧洲淡水区域出发,历经长达5000公里的令人惊叹的洄游,穿越北大西洋抵达马尾藻海。在洄游过程中,随着性成熟,鳗鲡的骨骼会经历显著的形态转变,此时会出现一种迄今完全不明的骨质流失现象。为了揭示与成熟相关的骨骼衰退机制,我们对处于不同生命周期阶段的鳗鲡骨骼进行了多尺度评估。相应地,骨骼显示出广泛的骨质流失,这种流失是由多核骨吸收破骨细胞介导的,而未观察到其他吸收机制,如骨细胞性骨溶解或基质脱矿。维持机械稳定性和释放矿物质用于能量代谢是骨骼的两个相互排斥的功能,在鳗鲡中,这两个功能通过两种空间上分离的硬组织来协调:细胞性骨和无细胞脊索。细胞性骨在破骨细胞吸收后作为矿物质释放的来源,而矿化的脊索鞘由于有未矿化的覆盖层而无法进行吸收过程,作为脊索鞘的一部分确保了足够的机械稳定性。显然,鳗鲡的骨骼在结构上经过优化,以应对在前往产卵区域的艰苦旅程中禁食和同时进行性发育的代谢挑战,同时维持脊柱的功能以实现这一目标。