Suppr超能文献

鉴定新型短 BaTiO3 结合/成核肽,用于室温下噬菌体模板原位合成 BaTiO3 多晶纳米线。

Identification of Novel Short BaTiO-Binding/Nucleating Peptides for Phage-Templated in Situ Synthesis of BaTiO Polycrystalline Nanowires at Room Temperature.

机构信息

School of Life Science, Northeast Normal University , Changchun, Jilin 130024, China.

Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Nov 16;8(45):30714-30721. doi: 10.1021/acsami.6b09708. Epub 2016 Nov 1.

Abstract

Ferroelectric materials, such as tetragonal barium titanate (BaTiO), have been widely used in a variety of areas including bioimaging, biosensing, and high power switching devices. However, conventional methods for the synthesis of tetragonal phase BaTiO usually require toxic organic reagents and high temperature treatments, and are thus not environment-friendly and energy-efficient. Here, we took advantage of the phage display technique to develop a novel strategy for the synthesis of BaTiO nanowires. We identified a short BaTiO-binding/nucleating peptide, CRGATPMSC (named RS), from a phage-displayed random peptide library by biopanning technique and then genetically fused the peptide to the major coat protein (pVIII) of filamentous M13 phages to form the pVIII-RS phages. We found that the resultant phages could not only bind with the presynthesized BaTiO crystals but also induce the nucleation of uniform tetragonal BaTiO nanocrystals at room temperature and without the use of toxic reagents to form one-dimensional polycrystalline BaTiO nanowires. This approach enables the green synthesis of BaTiO polycrystalline nanowires with potential applications in bioimaging and biosensing fields.

摘要

铁电材料,如四方相钛酸钡(BaTiO),已被广泛应用于生物成像、生物传感和高功率开关器件等多个领域。然而,传统的四方相 BaTiO 合成方法通常需要使用有毒的有机试剂和高温处理,因此不环保且能源效率低。在这里,我们利用噬菌体展示技术开发了一种合成 BaTiO 纳米线的新策略。我们通过生物淘选技术从噬菌体展示的随机肽文库中鉴定出一个短的 BaTiO 结合/成核肽 CRGATPMSC(命名为 RS),然后将该肽基因融合到丝状 M13 噬菌体的主要衣壳蛋白(pVIII)上,形成 pVIII-RS 噬菌体。我们发现,所得噬菌体不仅可以与预合成的 BaTiO 晶体结合,还可以在室温下诱导均匀四方相 BaTiO 纳米晶的成核,而无需使用有毒试剂来形成一维多晶 BaTiO 纳米线。这种方法可以实现 BaTiO 多晶纳米线的绿色合成,有望应用于生物成像和生物传感领域。

相似文献

9
Viral assembly of oriented quantum dot nanowires.定向量子点纳米线的病毒组装
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6946-51. doi: 10.1073/pnas.0832310100. Epub 2003 May 30.

引用本文的文献

2
Bacteriophage Technology and Modern Medicine.噬菌体技术与现代医学
Antibiotics (Basel). 2021 Aug 18;10(8):999. doi: 10.3390/antibiotics10080999.
4
Sequence-Specific Control of Inorganic Nanomaterials Morphologies by Biomolecules.生物分子对无机纳米材料形态的序列特异性控制
Curr Opin Colloid Interface Sci. 2018 Nov;38:158-169. doi: 10.1016/j.cocis.2018.10.009. Epub 2018 Oct 31.
5
Bacteriophage-based biomaterials for tissue regeneration.基于噬菌体的组织再生生物材料。
Adv Drug Deliv Rev. 2019 May;145:73-95. doi: 10.1016/j.addr.2018.11.004. Epub 2018 Nov 16.
6
Phage-Based Applications in Synthetic Biology.基于噬菌体的合成生物学应用。
Annu Rev Virol. 2018 Sep 29;5(1):453-476. doi: 10.1146/annurev-virology-092917-043544. Epub 2018 Jul 12.

本文引用的文献

6
A hyper-stretchable elastic-composite energy harvester.一种超可拉伸的弹性复合能量收集器。
Adv Mater. 2015 May 13;27(18):2866-75. doi: 10.1002/adma.201500367. Epub 2015 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验