Suppr超能文献

基于噬菌体的组织再生生物材料。

Bacteriophage-based biomaterials for tissue regeneration.

机构信息

Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States.

School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

出版信息

Adv Drug Deliv Rev. 2019 May;145:73-95. doi: 10.1016/j.addr.2018.11.004. Epub 2018 Nov 16.

Abstract

Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.

摘要

噬菌体,也称为噬菌体,是一种对人类安全的细菌特异性病毒。它是一种由蛋白质(形成外表面)和核酸(包裹在蛋白质衣壳内)组成的单分散生物纳米结构。在不同类型的噬菌体中,丝状噬菌体因其独特的纤维状形态在组织再生研究中受到了极大关注。它们可以以无错误的格式产生,自我组装成有序的支架,特异性地展示多个信号肽,并作为识别新型信号肽或归巢肽的平台。当它们被组织成适当的模式或显示合适的肽时,它们可以指导干细胞分化为特定的细胞类型。这些不寻常的特性使科学家能够利用它们来再生多种组织,包括骨骼、神经、软骨、皮肤和心脏。本综述将总结基于噬菌体的组织再生领域的进展以及该领域的未来方向。

相似文献

1
Bacteriophage-based biomaterials for tissue regeneration.
Adv Drug Deliv Rev. 2019 May;145:73-95. doi: 10.1016/j.addr.2018.11.004. Epub 2018 Nov 16.
2
Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine.
Acc Chem Res. 2016 Jun 21;49(6):1111-20. doi: 10.1021/acs.accounts.5b00557. Epub 2016 May 6.
3
Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy.
Mater Today Bio. 2023 Mar 24;20:100612. doi: 10.1016/j.mtbio.2023.100612. eCollection 2023 Jun.
4
Genetically engineered nanofiber-like viruses for tissue regenerating materials.
Nano Lett. 2009 Feb;9(2):846-52. doi: 10.1021/nl8036728.
5
Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering.
Int J Mol Sci. 2022 Jul 2;23(13):7388. doi: 10.3390/ijms23137388.
6
Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
Methods Mol Biol. 2018;1776:487-502. doi: 10.1007/978-1-4939-7808-3_32.
7
Electrospun Nanofiber Scaffold for Skin Tissue Engineering: A Review.
ACS Appl Bio Mater. 2024 Jun 17;7(6):3556-3567. doi: 10.1021/acsabm.4c00318. Epub 2024 May 22.
9
A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration.
Biomaterials. 2014 Dec;35(36):9608-19. doi: 10.1016/j.biomaterials.2014.08.020. Epub 2014 Aug 28.
10
Filamentous Phages as Building Blocks for Bioactive Hydrogels.
ACS Appl Bio Mater. 2021 Mar 15;4(3):2262-2273. doi: 10.1021/acsabm.0c01557. Epub 2021 Feb 10.

引用本文的文献

1
[Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2024 Nov 15;38(11):1408-1413. doi: 10.7507/1002-1892.202407101.
2
Current status of clinical trials for phage therapy.
J Med Microbiol. 2024 Sep;73(9). doi: 10.1099/jmm.0.001895.
4
Recent research of peptide-based hydrogel in nervous regeneration.
Bioact Mater. 2024 Jun 29;40:503-523. doi: 10.1016/j.bioactmat.2024.06.013. eCollection 2024 Oct.
6
Phage-based delivery systems: engineering, applications, and challenges in nanomedicines.
J Nanobiotechnology. 2024 Jun 25;22(1):365. doi: 10.1186/s12951-024-02576-4.
7
Designing molecules: directing stem cell differentiation.
Front Bioeng Biotechnol. 2024 May 10;12:1396405. doi: 10.3389/fbioe.2024.1396405. eCollection 2024.
8
Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents.
Front Bioeng Biotechnol. 2024 Apr 25;12:1319830. doi: 10.3389/fbioe.2024.1319830. eCollection 2024.
9
Harnessing filamentous phages for enhanced stroke recovery.
Front Immunol. 2024 Jan 16;14:1343788. doi: 10.3389/fimmu.2023.1343788. eCollection 2023.
10
Synthetic extracellular matrices with function-encoding peptides.
Nat Rev Bioeng. 2023 Apr 25:1-19. doi: 10.1038/s44222-023-00055-3.

本文引用的文献

1
A fluorogenic monolayer to detect the co-immobilization of peptides that combine cartilage targeting and regeneration.
J Mater Chem B. 2013 Apr 14;1(14):1903-1908. doi: 10.1039/c3tb20109k. Epub 2013 Feb 25.
2
Signaling of extracellular matrices for tissue regeneration and therapeutics.
Tissue Eng Regen Med. 2016 Feb 2;13(1):1-12. doi: 10.1007/s13770-016-9075-0. eCollection 2016 Feb.
3
Bacteriophages of the Urinary Microbiome.
J Bacteriol. 2018 Mar 12;200(7). doi: 10.1128/JB.00738-17. Print 2018 Apr 1.
5
Stem Cell Reviews and Reports: Adult Stem Cells and Tissue Regeneration Section.
Stem Cell Rev Rep. 2017 Feb;13(1):2. doi: 10.1007/s12015-017-9724-6.
6
Bone Microenvironment, Stem Cells, and Bone Tissue Regeneration.
Stem Cells Int. 2017;2017:1315243. doi: 10.1155/2017/1315243. Epub 2017 Jan 17.
7
Trends in tissue repair and regeneration.
Development. 2017 Feb 1;144(3):357-364. doi: 10.1242/dev.144279.
8
Nanobiomaterials for neural regeneration.
Neural Regen Res. 2016 Sep;11(9):1372-1374. doi: 10.4103/1673-5374.191195.
10
Peptides for bone tissue engineering.
J Control Release. 2016 Dec 28;244(Pt A):122-135. doi: 10.1016/j.jconrel.2016.10.024. Epub 2016 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验