Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Nat Commun. 2016 Nov 4;7:13388. doi: 10.1038/ncomms13388.
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.
关于生物大分子在原子尺度附近的结构信息为这些分子的功能提供了重要的见解。迄今为止,X 射线晶体学一直是用于确定大分子结构的主要方法。然而,在使用 X 射线解决结构问题时存在一些挑战,包括相位问题和辐射损伤。X 射线自由电子激光(X 射线 FEL)能够在辐射损伤发生之前收集衍射信息,但在 X 射线 FEL 上解决的大多数结构都是通过分子置换使用外部信息进行相位确定的。由于强度和波长的脉冲间变化,X 射线 FEL 上的从头相位确定一直具有挑战性。在这里,我们报告了使用在 Linac Coherent Light Source 处单一波长(硒-SAD)测量的硒的反常衍射获得的相位解决了一个硒代生物素化链霉亲和素的结构。我们的结果表明,硒-SAD 现在可以在 X 射线 FEL 上实现,该方法在同步加速器上常规用于新型结构确定。