Gorel Alexander, Schlichting Ilme, Barends Thomas R M
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany.
IUCrJ. 2021 Jun 30;8(Pt 4):532-543. doi: 10.1107/S205225252100467X. eCollection 2021 Jul 1.
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of still diffraction images of generally randomly oriented microcrystals. For this reason, and possibly due to limitations of the still evolving data-analysis programs, XFEL-derived SFX data are typically of a lower quality than 'standard' crystallographic data. In contrast with this, the studies performed at XFELs often aim to investigate issues that require precise high-resolution data, for example to determine structures of intermediates at low occupancy, which often display very small conformational changes. This is a potentially dangerous combination and underscores the need for a critical evaluation of procedures including data-quality standards in XFEL-based structural biology. Here, such concerns are addressed.
X射线自由电子激光(XFEL)下的串行飞秒晶体学(SFX)是结构生物学中的一种新型工具。与传统晶体学不同,SFX依赖于合并从大量通常随机取向的微晶的静止衍射图像中获取的部分强度,这些X射线束的特性往往是随机波动的。因此,可能由于仍在不断发展的数据分析程序的局限性,XFEL衍生的SFX数据通常质量低于“标准”晶体学数据。与此形成对比的是,在XFEL上进行的研究通常旨在研究需要精确高分辨率数据的问题,例如确定低占有率中间体的结构,这些中间体通常显示出非常小的构象变化。这是一个潜在的危险组合,凸显了对包括基于XFEL的结构生物学中的数据质量标准在内的程序进行严格评估的必要性。在此,解决了此类问题。