Suppr超能文献

离散搜索光度立体法用于快速准确的形状估计。

Discrete Search Photometric Stereo for Fast and Accurate Shape Estimation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4355-4367. doi: 10.1109/TPAMI.2022.3198729. Epub 2023 Mar 7.

Abstract

We consider the problem of estimating surface normals of a scene with spatially varying, general bidirectional reflectance distribution functions (BRDFs) observed by a static camera under varying distant illuminations. Unlike previous approaches that rely on continuous optimization of surface normals, we cast the problem as a discrete search problem over a set of finely discretized surface normals. In this setting, we show that the expensive processes can be precomputed in a scene-independent manner, resulting in accelerated inference. We discuss two variants of our discrete search photometric stereo (DSPS), one working with continuous linear combinations of BRDF bases and the other working with discrete BRDFs sampled from a BRDF space. Experiments show that DSPS has comparable accuracy to state-of-the-art exemplar-based photometric stereo methods while achieving 10-100x acceleration.

摘要

我们考虑了在静态相机下,由不同距离照明观察到的具有空间变化的、一般双向反射分布函数(BRDF)的场景的表面法线估计问题。与以前依赖于表面法线连续优化的方法不同,我们将问题表述为在一组精细离散化的表面法线上进行离散搜索问题。在这种情况下,我们表明昂贵的过程可以以与场景无关的方式预先计算,从而实现加速推理。我们讨论了我们的离散搜索摄影测量(DSPS)的两个变体,一个变体使用 BRDF 基的连续线性组合,另一个变体使用从 BRDF 空间中采样的离散 BRDF。实验表明,DSPS 在实现 10-100 倍加速的同时,与基于范例的最新摄影测量方法具有相当的准确性。

相似文献

1
Discrete Search Photometric Stereo for Fast and Accurate Shape Estimation.离散搜索光度立体法用于快速准确的形状估计。
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4355-4367. doi: 10.1109/TPAMI.2022.3198729. Epub 2023 Mar 7.
2
Continuous material reflectance map for deep photometric stereo.用于深度光度立体视觉的连续材质反射率图。
J Opt Soc Am A Opt Image Sci Vis. 2023 Apr 1;40(4):792-802. doi: 10.1364/JOSAA.480577.
3
SymPS: BRDF Symmetry Guided Photometric Stereo for Shape and Light Source Estimation.SymPS:基于 BRDF 对称性引导的光度立体形状和光源估计
IEEE Trans Pattern Anal Mach Intell. 2018 Jan;40(1):221-234. doi: 10.1109/TPAMI.2017.2655525. Epub 2017 Jan 19.
5
Deep Photometric Stereo Networks for Determining Surface Normal and Reflectances.用于确定表面法线和反射率的深度光度立体网络
IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):114-128. doi: 10.1109/TPAMI.2020.3005219. Epub 2021 Dec 7.
6
Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars.从虚拟范本中进行形状和空间变化反射率估计。
IEEE Trans Pattern Anal Mach Intell. 2017 Oct;39(10):2060-2073. doi: 10.1109/TPAMI.2016.2623613. Epub 2016 Nov 1.
7
Efficient Photometric Stereo Using Kernel Regression.使用核回归的高效光度立体视觉
IEEE Trans Image Process. 2017 Jan;26(1):439-451. doi: 10.1109/TIP.2016.2627805. Epub 2016 Nov 10.
10
Dense photometric stereo: a Markov random field approach.密集光度立体视觉:一种马尔可夫随机场方法。
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1830-46. doi: 10.1109/TPAMI.2006.224.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验