Suppr超能文献

MinePath:挖掘分子通路中的表型差异子通路

MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.

作者信息

Koumakis Lefteris, Kanterakis Alexandros, Kartsaki Evgenia, Chatzimina Maria, Zervakis Michalis, Tsiknakis Manolis, Vassou Despoina, Kafetzopoulos Dimitris, Marias Kostas, Moustakis Vassilis, Potamias George

机构信息

Computational BioMedicine Laboratory (CBML), Institute of Computers Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.

School of Electrical and Computer Engineering, Technical University of Crete, Greece.

出版信息

PLoS Comput Biol. 2016 Nov 10;12(11):e1005187. doi: 10.1371/journal.pcbi.1005187. eCollection 2016 Nov.

Abstract

Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.

摘要

通路分析方法将传统的基因表达分析与已建立的分子通路网络中编码的知识相结合,为区分表型的基因进行生物学解释提供了一种很有前景的方法。早期的通路分析方法,称为基因集分析(GSA),仅将通路视为简单的基因列表,而不考虑潜在的通路网络拓扑结构或所涉及的基因调控关系。这些方法即使实现了计算效率和简单性,但在基因富集特征方面,认为涉及相同基因的通路是等效的。最新的通路分析方法通过检查基因调控关系与基因表达谱的一致性并为每个谱计算一个分数,来考虑潜在的基因调控关系。即使采用这种方法,评估和对单一关系进行评分也限制了揭示隐藏在较长通路子路径中的关键基因调控机制的能力。我们引入了MinePath,这是一种解决并克服上述问题的通路分析方法。MinePath有助于将通路分解为其组成子路径。分解导致单一关系转变为复杂的调控子路径。然后将调控子路径与基因表达样本谱进行匹配,以评估其功能状态并评估表型差异能力。差异能力的评估有助于识别最具区分性的谱。此外,MinePath评估通路整体的显著性,并按p值对它们进行排名。与现有最先进的通路分析系统的比较结果表明了MinePath方法的合理性和可靠性。与许多通路分析工具不同,MinePath是一个基于网络的系统(www.minepath.org),提供动态且丰富的通路可视化功能,具有独特的特性,即对基因之间的调控关系进行着色并揭示其表型倾向。这一独特特性使MinePath成为计算机模拟分子生物学实验的宝贵工具,因为它满足了生物医学研究人员探索性的需求,以揭示和解释潜在的并假定控制目标表型表达的调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a0/5104320/de34970fce50/pcbi.1005187.g001.jpg

相似文献

1
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
PLoS Comput Biol. 2016 Nov 10;12(11):e1005187. doi: 10.1371/journal.pcbi.1005187. eCollection 2016 Nov.
2
minepath.org: a free interactive pathway analysis web server.
Nucleic Acids Res. 2017 Jul 3;45(W1):W116-W121. doi: 10.1093/nar/gkx278.
3
Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Nov-Dec;12(6):1365-73. doi: 10.1109/TCBB.2015.2420551.
5
Testing gene set enrichment for subset of genes: Sub-GSE.
BMC Bioinformatics. 2008 Sep 2;9:362. doi: 10.1186/1471-2105-9-362.
6
TAPPA: topological analysis of pathway phenotype association.
Bioinformatics. 2007 Nov 15;23(22):3100-2. doi: 10.1093/bioinformatics/btm460. Epub 2007 Sep 21.
7
BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network.
Bioinformatics. 2006 Dec 1;22(23):2952-4. doi: 10.1093/bioinformatics/btl491. Epub 2006 Sep 27.
8
BisoGenet: a new tool for gene network building, visualization and analysis.
BMC Bioinformatics. 2010 Feb 17;11:91. doi: 10.1186/1471-2105-11-91.
9
Construction of a reference gene association network from multiple profiling data: application to data analysis.
Bioinformatics. 2007 Oct 15;23(20):2716-24. doi: 10.1093/bioinformatics/btm423. Epub 2007 Sep 10.
10
NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.
PLoS Comput Biol. 2012;8(5):e1002490. doi: 10.1371/journal.pcbi.1002490. Epub 2012 May 10.

引用本文的文献

1
Artificial intelligence in pancreatic cancer: diagnosis, limitations, and the future prospects-a narrative review.
J Cancer Res Clin Oncol. 2023 Aug;149(9):6743-6751. doi: 10.1007/s00432-023-04625-1. Epub 2023 Feb 4.
2
Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma.
World J Gastroenterol. 2021 Nov 21;27(43):7480-7496. doi: 10.3748/wjg.v27.i43.7480.
3
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients.
Mol Neurobiol. 2021 Oct;58(10):4816-4827. doi: 10.1007/s12035-021-02465-z. Epub 2021 Jun 28.
4
Genome-scale mechanistic modeling of signaling pathways made easy: A bioconductor/cytoscape/web server framework for the analysis of omic data.
Comput Struct Biotechnol J. 2021 May 15;19:2968-2978. doi: 10.1016/j.csbj.2021.05.022. eCollection 2021.
5
Two gene set variation indexes as potential diagnostic tool for sepsis.
Am J Transl Res. 2020 Jun 15;12(6):2749-2759. eCollection 2020.
6
Deep learning models in genomics; are we there yet?
Comput Struct Biotechnol J. 2020 Jun 17;18:1466-1473. doi: 10.1016/j.csbj.2020.06.017. eCollection 2020.
8
Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype.
BMC Genet. 2019 Mar 19;20(1):36. doi: 10.1186/s12863-019-0739-7.
9
A comparison of mechanistic signaling pathway activity analysis methods.
Brief Bioinform. 2019 Sep 27;20(5):1655-1668. doi: 10.1093/bib/bby040.
10
minepath.org: a free interactive pathway analysis web server.
Nucleic Acids Res. 2017 Jul 3;45(W1):W116-W121. doi: 10.1093/nar/gkx278.

本文引用的文献

2
Discretization of gene expression data revised.
Brief Bioinform. 2016 Sep;17(5):758-70. doi: 10.1093/bib/bbv074. Epub 2015 Sep 22.
3
Targeting Mdmx to treat breast cancers with wild-type p53.
Cell Death Dis. 2015 Jul 16;6(7):e1821. doi: 10.1038/cddis.2015.173.
5
Overcome support vector machine diagnosis overfitting.
Cancer Inform. 2014 Dec 9;13(Suppl 1):145-58. doi: 10.4137/CIN.S13875. eCollection 2014.
7
Pathway-based analysis tools for complex diseases: a review.
Genomics Proteomics Bioinformatics. 2014 Oct;12(5):210-20. doi: 10.1016/j.gpb.2014.10.002. Epub 2014 Oct 28.
8
ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis.
F1000Res. 2014 Jul 1;3:146. doi: 10.12688/f1000research.4431.2. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验