Suppr超能文献

从 RNA-seq 数据中识别和利用基因-通路相互作用进行二元表型分析。

Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype.

机构信息

Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, People's Republic of China.

Department of Pharmacy Informatics, School of Science, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing , Jiangsu, People's Republic of China.

出版信息

BMC Genet. 2019 Mar 19;20(1):36. doi: 10.1186/s12863-019-0739-7.

Abstract

BACKGROUND

RNA sequencing (RNA-seq) technology has identified multiple differentially expressed (DE) genes associated to complex disease, however, these genes only explain a modest part of variance. Omnigenic model assumes that disease may be driven by genes with indirect relevance to disease and be propagated by functional pathways. Here, we focus on identifying the interactions between the external genes and functional pathways, referring to gene-pathway interactions (GPIs). Specifically, relying on the relationship between the garrote kernel machine (GKM) and variance component test and permutations for the empirical distributions of score statistics, we propose an efficient analysis procedure as Permutation based gEne-pAthway interaction identification in binary phenotype (PEA).

RESULTS

Various simulations show that PEA has well-calibrated type I error rates and higher power than the traditional likelihood ratio test (LRT). In addition, we perform the gene set enrichment algorithms and PEA to identifying the GPIs from a pan-cancer data (GES68086). These GPIs and genes possibly further illustrate the potential etiology of cancers, most of which are identified and some external genes and significant pathways are consistent with previous studies.

CONCLUSIONS

PEA is an efficient tool for identifying the GPIs from RNA-seq data. It can be further extended to identify the interactions between one variable and one functional set of other omics data for binary phenotypes.

摘要

背景

RNA 测序(RNA-seq)技术已经确定了与复杂疾病相关的多个差异表达(DE)基因,但这些基因仅能解释部分方差。全基因组模型假设疾病可能由与疾病间接相关的基因驱动,并通过功能途径传播。在这里,我们专注于识别外部基因与功能途径之间的相互作用,即基因-途径相互作用(GPIs)。具体来说,我们依赖于绞索核机器(GKM)和方差分量检验之间的关系,以及分数统计量经验分布的置换,提出了一种有效的分析程序,即基于置换的二元表型基因-途径相互作用识别(PEA)。

结果

各种模拟表明,PEA 具有良好校准的Ⅰ型错误率和比传统似然比检验(LRT)更高的功效。此外,我们对泛癌数据(GES68086)进行了基因集富集算法和 PEA 以识别 GPIs。这些 GPIs 和基因可能进一步说明了癌症的潜在病因,其中大部分是已识别的,一些外部基因和重要途径与之前的研究一致。

结论

PEA 是一种从 RNA-seq 数据中识别 GPIs 的有效工具。它可以进一步扩展,以识别二元表型中一个变量与其他组学数据中一组功能的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e82/6423879/1e5c92857494/12863_2019_739_Fig1_HTML.jpg

相似文献

1
Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype.
BMC Genet. 2019 Mar 19;20(1):36. doi: 10.1186/s12863-019-0739-7.
2
Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks.
PLoS One. 2024 May 16;19(5):e0302696. doi: 10.1371/journal.pone.0302696. eCollection 2024.
3
Variance component testing for identifying differentially expressed genes in RNA-seq data.
PeerJ. 2017 Sep 8;5:e3797. doi: 10.7717/peerj.3797. eCollection 2017.
7
An Adaptive Genetic Association Test Using Double Kernel Machines.
Stat Biosci. 2015 Oct 1;7(2):262-281. doi: 10.1007/s12561-014-9116-2. Epub 2014 Jun 24.
8
Kernel-based hierarchical structural component models for pathway analysis on survival phenotype.
Genes Genomics. 2024 Dec;46(12):1415-1421. doi: 10.1007/s13258-024-01569-9. Epub 2024 Sep 26.
9
Kernel-based hierarchical structural component models for pathway analysis.
Bioinformatics. 2022 May 26;38(11):3078-3086. doi: 10.1093/bioinformatics/btac276.

引用本文的文献

1
RNA-Seq Technology Reveals the Mechanism of SDT Combined With Novel Nanobubbles Against HCC.
Front Mol Biosci. 2022 Feb 7;8:791331. doi: 10.3389/fmolb.2021.791331. eCollection 2021.
2
Identifying Differentially Expressed Genes of Zero Inflated Single Cell RNA Sequencing Data Using Mixed Model Score Tests.
Front Genet. 2021 Feb 5;12:616686. doi: 10.3389/fgene.2021.616686. eCollection 2021.

本文引用的文献

2
A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples.
Cell. 2018 Apr 5;173(2):386-399.e12. doi: 10.1016/j.cell.2018.03.027.
3
An epigenetic basis for an omnigenic model of psychiatric disorders.
J Theor Biol. 2018 Apr 14;443:52-55. doi: 10.1016/j.jtbi.2018.01.027. Epub 2018 Jan 31.
4
Challenges in understanding common disease.
Genome Med. 2017 Dec 18;9(1):112. doi: 10.1186/s13073-017-0506-1.
5
Network approaches and applications in biology.
PLoS Comput Biol. 2017 Oct 12;13(10):e1005771. doi: 10.1371/journal.pcbi.1005771. eCollection 2017 Oct.
6
Variance component testing for identifying differentially expressed genes in RNA-seq data.
PeerJ. 2017 Sep 8;5:e3797. doi: 10.7717/peerj.3797. eCollection 2017.
7
Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits.
PLoS Genet. 2017 Jul 26;13(7):e1006869. doi: 10.1371/journal.pgen.1006869. eCollection 2017 Jul.
8
An Expanded View of Complex Traits: From Polygenic to Omnigenic.
Cell. 2017 Jun 15;169(7):1177-1186. doi: 10.1016/j.cell.2017.05.038.
9
Differential expression analysis for RNAseq using Poisson mixed models.
Nucleic Acids Res. 2017 Jun 20;45(11):e106. doi: 10.1093/nar/gkx204.
10
Genetic architecture of kernel composition in global sorghum germplasm.
BMC Genomics. 2017 Jan 5;18(1):15. doi: 10.1186/s12864-016-3403-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验