Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA.
Sensors (Basel). 2024 Apr 29;24(9):2823. doi: 10.3390/s24092823.
The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.
癫痫是第二常见的慢性神经障碍,其治疗常常因患者对药物治疗无反应而变得复杂。抗癫痫药物治疗失败通常是由于存在非癫痫性发作。区分非癫痫性发作和癫痫性发作需要对在癫痫监测单元中记录的脑电图 (EEG) 进行昂贵且耗时的分析。机器学习算法已被用于从 EEG 中检测癫痫发作,通常使用 EEG 波形分析。我们采用了一种替代方法,使用具有迁移学习的卷积神经网络 (CNN),使用 MobileNetV2 模拟癫痫专家对 EEG 图像的实际视觉分析。总共从两个不同医疗设施的两个癫痫监测单元中的 107 名成年患者中收集了 5359 个 EEG 波形图图像,并将其分为癫痫组和非癫痫组,用于 CNN 的训练和交叉验证。该模型在提取训练数据的地点的准确率为 86.9%(曲线下面积,AUC 0.92),在另一个仅用于验证的数据地点的准确率为 87.3%(AUC 0.94)。这项研究表明,CNN 对 EEG 图图像进行分析可以达到很高的准确性,并且这种方法在 EEG 可视化软件之间具有很强的稳健性,为在临床环境中使用类似方法对癫痫发作进行进一步细分奠定了基础。