Liu Yen-Liang, Perillo Evan P, Liu Cong, Yu Peter, Chou Chao-Kai, Hung Mien-Chie, Dunn Andrew K, Yeh Hsin-Chih
Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.
Biophys J. 2016 Nov 15;111(10):2214-2227. doi: 10.1016/j.bpj.2016.09.041.
Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups-immobilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized, transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen. This observation agrees well with the model of clathrin-mediated endocytosis.
尽管在过去三十年中,单粒子追踪取得的重要发现改变了我们对质膜组织和运动蛋白动力学的看法,但由于缺乏三维(3D)追踪能力,利用单粒子追踪对细胞内过程进行的实验研究相当匮乏。在本研究中,我们使用一种新开发的3D单粒子追踪方法,称为海啸法(使用非线性和多路复用照明追踪单粒子),以16/43纳米(xy/z)的空间分辨率研究活细胞中表皮生长因子受体(EGFR)的运输动力学,轨迹持续时间为2至10分钟,垂直追踪深度可达数十微米。为了分析海啸显微镜生成的长3D轨迹,我们开发了一种轨迹分析算法,在对照实验(称为模拟运动实验)中,该算法的片段分类准确率达到81%。在分析从活的皮肤癌细胞中获取的95条表皮生长因子刺激的表皮生长因子受体轨迹时,我们发现这些轨迹可分为三组:固定(24.2%)、仅膜扩散(51.6%)和从膜到细胞质的运输(24.2%)。当表皮生长因子受体与膜结合时,它们表现出布朗扩散和受限扩散的相互转换。当表皮生长因子受体被内化时,可以清楚地看到从受限扩散到定向扩散以及从定向扩散回到受限扩散的转变。这一观察结果与网格蛋白介导的内吞作用模型非常吻合。