Suppr超能文献

为何因果推断对护士至关重要:以护士人员配置与患者结局为例

Why Causal Inference Matters to Nurses: The Case of Nurse Staffing and Patient Outcomes.

作者信息

Costa Deena Kelly, Yakusheva Olga

出版信息

Online J Issues Nurs. 2016 May 31;21(2):2. doi: 10.3912/OJIN.Vol21No02Man02.

Abstract

Since the early 1990s researchers have steadily built a broad evidence base for the association between nurse staffing and patient outcomes. However, the majority of the studies in the literature employ designs that are unable to robustly examine causal pathways to meaningful improvement in patient outcomes. A focus on causal inference is essential to moving the field of nursing research forward, and as part of the essential skill-set for all nurses as consumers of research. In this article, we aim to describe the importance of causal inference in nursing research and discuss study designs that are more likely to produce causal findings. We first review the conceptual framework supporting this discussion and then use selected examples from the literature, typifying three key study designs – cross-sectional, longitudinal, and randomized control trials (RCTs). The discussion will illustrate strengths and limitation of existing evidence, focusing on the causal pathway between nurse staffing and outcomes. The article conclusion considers implications for future research.

摘要

自20世纪90年代初以来,研究人员一直在稳步建立关于护士配备与患者预后之间关联的广泛证据基础。然而,文献中的大多数研究采用的设计无法有力地检验改善患者预后的因果途径。关注因果推断对于推动护理研究领域的发展至关重要,并且是所有护士作为研究消费者必备技能的一部分。在本文中,我们旨在描述因果推断在护理研究中的重要性,并讨论更有可能产生因果研究结果的研究设计。我们首先回顾支持这一讨论的概念框架,然后从文献中选取典型例子,代表三种关键的研究设计——横断面研究、纵向研究和随机对照试验(RCT)。讨论将说明现有证据的优势和局限性,重点关注护士配备与预后之间的因果途径。文章结论考虑了对未来研究的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验