Suppr超能文献

无支架组织工程化功能性角膜基质组织。

Scaffold-free tissue engineering of functional corneal stromal tissue.

机构信息

Department of Ophthalmology, University of Pittsburgh, PA, USA.

McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.

出版信息

J Tissue Eng Regen Med. 2018 Jan;12(1):59-69. doi: 10.1002/term.2363. Epub 2017 May 31.

Abstract

Blinding corneal scarring is predominately treated with allogeneic graft tissue; however, there is a worldwide shortage of donor tissue leaving millions in need of therapy. Human corneal stromal stem cells (CSSC) have been shown produce corneal tissue when cultured on nanofibre scaffolding, but this tissue cannot be readily separated from the scaffold. In this study, scaffold-free tissue engineering methods were used to generate biomimetic corneal stromal tissue constructs that can be transplanted in vivo without introducing the additional variables associated with exogenous scaffolding. CSSC were cultured on substrates with aligned microgrooves, which directed parallel cell alignment and matrix organization, similar to the organization of native corneal stromal lamella. CSSC produced sufficient matrix to allow manual separation of a tissue sheet from the grooved substrate. These constructs were cellular and collagenous tissue sheets, approximately 4 μm thick and contained extracellular matrix molecules typical of corneal tissue including collagen types I and V and keratocan. Similar to the native corneal stroma, the engineered corneal tissues contained long parallel collagen fibrils with uniform diameter. After being transplanted into mouse corneal stromal pockets, the engineered corneal stromal tissues became transparent, and the human CSSCs continued to express human corneal stromal matrix molecules. Both in vitro and in vivo, these scaffold-free engineered constructs emulated stromal lamellae of native corneal stromal tissues. Scaffold-free engineered corneal stromal constructs represent a novel, potentially autologous, cell-generated, biomaterial with the potential for treating corneal blindness. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

角膜瘢痕性失明主要采用同种异体移植物组织进行治疗;然而,全球供体组织短缺,数以百万计的人需要接受治疗。已经表明,人角膜基质干细胞(CSSC)在纳米纤维支架上培养时会产生角膜组织,但这种组织不能轻易地与支架分离。在这项研究中,使用无支架组织工程方法生成仿生角膜基质组织构建体,可在体内移植而不会引入与外源性支架相关的额外变量。CSSC 在具有定向微槽的基底上培养,微槽引导平行的细胞排列和基质组织,类似于天然角膜基质板层的组织。CSSC 产生了足够的基质,允许从有槽基底手动分离组织片。这些构建体是细胞和胶原组织片,厚度约为 4 μm,包含角膜组织中典型的细胞外基质分子,包括胶原 I 型和 V 型和角膜蛋白聚糖。与天然角膜基质相似,工程化的角膜组织包含具有均匀直径的长平行胶原纤维。在移植到小鼠角膜基质囊中后,工程化的角膜基质组织变得透明,人 CSSC 继续表达人角膜基质基质分子。无论是在体外还是体内,这些无支架的工程构建体都模拟了天然角膜基质组织的基质板层。无支架工程化的角膜基质构建体代表了一种新型的、潜在的自体、细胞生成的生物材料,具有治疗角膜盲的潜力。版权所有 © 2016 约翰威立父子公司

相似文献

1
Scaffold-free tissue engineering of functional corneal stromal tissue.
J Tissue Eng Regen Med. 2018 Jan;12(1):59-69. doi: 10.1002/term.2363. Epub 2017 May 31.
3
The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells.
Biomaterials. 2012 Feb;33(5):1343-52. doi: 10.1016/j.biomaterials.2011.10.055. Epub 2011 Nov 10.
4
3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.
PLoS One. 2017 Jan 18;12(1):e0169504. doi: 10.1371/journal.pone.0169504. eCollection 2017.
6
The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.
PLoS One. 2013 Oct 1;8(10):e76103. doi: 10.1371/journal.pone.0076103. eCollection 2013.
7
Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates.
Tissue Eng Part A. 2013 Sep;19(17-18):2063-75. doi: 10.1089/ten.TEA.2012.0545. Epub 2013 May 13.
8
Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring.
Stem Cells Transl Med. 2018 Jun;7(6):487-494. doi: 10.1002/sctm.17-0258. Epub 2018 Apr 14.
10
Dental pulp stem cells: a new cellular resource for corneal stromal regeneration.
Stem Cells Transl Med. 2015 Mar;4(3):276-85. doi: 10.5966/sctm.2014-0115.

引用本文的文献

1
Editorial: Regenerating the dentin-pulp complex: understanding the challenges that lie ahead.
Front Bioeng Biotechnol. 2023 Jul 11;11:1249969. doi: 10.3389/fbioe.2023.1249969. eCollection 2023.
2
Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications.
Prog Retin Eye Res. 2023 Sep;96:101192. doi: 10.1016/j.preteyeres.2023.101192. Epub 2023 Jun 29.
3
Tissue Engineered Mini-Cornea Model for Eye Irritation Test.
Tissue Eng Regen Med. 2023 Apr;20(2):213-223. doi: 10.1007/s13770-022-00504-x. Epub 2022 Dec 11.
4
Promoting and Orienting Axon Extension Using Scaffold-Free Dental Pulp Stem Cell Sheets.
ACS Biomater Sci Eng. 2022 Feb 14;8(2):814-825. doi: 10.1021/acsbiomaterials.1c01517. Epub 2022 Jan 4.
5
Regenerative therapy for the Cornea.
Prog Retin Eye Res. 2022 Mar;87:101011. doi: 10.1016/j.preteyeres.2021.101011. Epub 2021 Sep 14.
7
Dental Pulp Cell Sheets Enhance Facial Nerve Regeneration via Local Neurotrophic Factor Delivery.
Tissue Eng Part A. 2021 Sep;27(17-18):1128-1139. doi: 10.1089/ten.TEA.2020.0265. Epub 2020 Dec 21.
8
Bioengineering Approaches for Corneal Regenerative Medicine.
Tissue Eng Regen Med. 2020 Oct;17(5):567-593. doi: 10.1007/s13770-020-00262-8. Epub 2020 Jul 21.
9
Corneal stromal stem cells restore transparency after N injury in mice.
Stem Cells Transl Med. 2020 Aug;9(8):917-935. doi: 10.1002/sctm.19-0306. Epub 2020 May 7.
10
Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering.
Bioact Mater. 2019 Oct 25;4:293-302. doi: 10.1016/j.bioactmat.2019.10.001. eCollection 2019 Dec.

本文引用的文献

1
Three-dimensional cardiac tissue fabrication based on cell sheet technology.
Adv Drug Deliv Rev. 2016 Jan 15;96:103-9. doi: 10.1016/j.addr.2015.05.002. Epub 2015 May 14.
2
In vitro expansion of corneal endothelial cells on biomimetic substrates.
Sci Rep. 2015 Jan 22;5:7955. doi: 10.1038/srep07955.
3
Human limbal biopsy-derived stromal stem cells prevent corneal scarring.
Sci Transl Med. 2014 Dec 10;6(266):266ra172. doi: 10.1126/scitranslmed.3009644.
4
Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages.
Ann Biomed Eng. 2015 Mar;43(3):543-54. doi: 10.1007/s10439-014-1161-y. Epub 2014 Oct 21.
5
Biocompatibility and functionality of a tissue-engineered living corneal stroma transplanted in the feline eye.
Invest Ophthalmol Vis Sci. 2014 Oct 2;55(10):6908-20. doi: 10.1167/iovs.14-14720.
6
Cell sheet engineering for regenerative medicine: current challenges and strategies.
Biotechnol J. 2014 Jul;9(7):904-14. doi: 10.1002/biot.201300432. Epub 2014 Jun 25.
7
Corneal stromal bioequivalents secreted on patterned silk substrates.
Biomaterials. 2014 Apr;35(12):3744-55. doi: 10.1016/j.biomaterials.2013.12.078. Epub 2014 Feb 3.
8
A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.
PLoS One. 2014 Jan 21;9(1):e86260. doi: 10.1371/journal.pone.0086260. eCollection 2014.
9
Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue.
Exp Eye Res. 2014 Mar;120:71-81. doi: 10.1016/j.exer.2014.01.005. Epub 2014 Jan 15.
10
TGF-β3 stimulates stromal matrix assembly by human corneal keratocyte-like cells.
Invest Ophthalmol Vis Sci. 2013 Oct 9;54(10):6612-9. doi: 10.1167/iovs.13-12861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验