Suppr超能文献

抵御包膜应激:噬菌体休克蛋白主题的变体

Protecting from Envelope Stress: Variations on the Phage-Shock-Protein Theme.

作者信息

Manganelli Riccardo, Gennaro Maria Laura

机构信息

Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.

Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.

出版信息

Trends Microbiol. 2017 Mar;25(3):205-216. doi: 10.1016/j.tim.2016.10.001. Epub 2016 Nov 16.

Abstract

During envelope stress, critical inner-membrane functions are preserved by the phage-shock-protein (Psp) system, a stress response that emerged from work with Escherichia coli and other Gram-negative bacteria. Reciprocal regulatory interactions and multiple effector functions are well documented in these organisms. Searches for the Psp system across phyla reveal conservation of only one protein, PspA. However, examination of Firmicutes and Actinobacteria reveals that PspA orthologs associate with non-orthologous regulatory and effector proteins retaining functions similar to those in Gram-negative counterparts. Conservation across phyla emphasizes the long-standing importance of the Psp system in prokaryotes, while inter- and intra-phyla variations within the system indicate adaptation to different cell envelope structures, bacterial lifestyles, and/or bacterial morphogenetic strategies.

摘要

在包膜应激期间,噬菌体休克蛋白(Psp)系统可维持关键内膜功能,这是一种源于对大肠杆菌和其他革兰氏阴性菌研究的应激反应。在这些生物体中,相互的调节相互作用和多种效应功能已有充分记录。对各门类中Psp系统的搜索发现,只有一种蛋白质PspA具有保守性。然而,对厚壁菌门和放线菌门的研究表明,PspA直系同源物与非直系同源的调节蛋白和效应蛋白相关联,这些蛋白保留了与革兰氏阴性菌对应物相似的功能。跨门类的保守性强调了Psp系统在原核生物中长期以来的重要性,而该系统在门类间和门类内的变异表明其适应了不同的细胞包膜结构、细菌生活方式和/或细菌形态发生策略。

相似文献

1
Protecting from Envelope Stress: Variations on the Phage-Shock-Protein Theme.
Trends Microbiol. 2017 Mar;25(3):205-216. doi: 10.1016/j.tim.2016.10.001. Epub 2016 Nov 16.
2
Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria.
Antonie Van Leeuwenhoek. 2018 May;111(5):753-760. doi: 10.1007/s10482-018-1053-5. Epub 2018 Feb 27.
3
Phyletic Distribution and Diversification of the Phage Shock Protein Stress Response System in Bacteria and Archaea.
mSystems. 2022 Jun 28;7(3):e0134821. doi: 10.1128/msystems.01348-21. Epub 2022 May 23.
4
Rv2744c Is a PspA Ortholog That Regulates Lipid Droplet Homeostasis and Nonreplicating Persistence in Mycobacterium tuberculosis.
J Bacteriol. 2016 May 13;198(11):1645-1661. doi: 10.1128/JB.01001-15. Print 2016 Jun 1.
5
The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history.
mSystems. 2024 Jun 18;9(6):e0084723. doi: 10.1128/msystems.00847-23. Epub 2024 May 29.
7
The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions.
Mol Microbiol. 2015 Aug;97(3):408-22. doi: 10.1111/mmi.13037. Epub 2015 May 26.
8
Characterization of the Streptomyces lividans PspA response.
J Bacteriol. 2008 May;190(10):3475-81. doi: 10.1128/JB.01966-07. Epub 2008 Mar 7.
9
The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli.
J Mol Biol. 2014 Apr 3;426(7):1498-511. doi: 10.1016/j.jmb.2013.12.016. Epub 2013 Dec 19.
10
In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli.
Mol Microbiol. 2009 Aug;73(3):382-96. doi: 10.1111/j.1365-2958.2009.06776.x. Epub 2009 Jun 22.

引用本文的文献

1
The bacterial ESCRT-III PspA rods thin lipid tubules and increase membrane curvature through helix α0 interactions.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2506286122. doi: 10.1073/pnas.2506286122. Epub 2025 Aug 4.
3
Structural plasticity of bacterial ESCRT-III protein PspA in higher-order assemblies.
Nat Struct Mol Biol. 2025 Jan;32(1):23-34. doi: 10.1038/s41594-024-01359-7. Epub 2024 Aug 16.
4
Structure of the SigE regulatory network in .
Front Microbiol. 2024 May 30;15:1407500. doi: 10.3389/fmicb.2024.1407500. eCollection 2024.
5
The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history.
mSystems. 2024 Jun 18;9(6):e0084723. doi: 10.1128/msystems.00847-23. Epub 2024 May 29.
7
The metabolic slowdown caused by the deletion of accelerates protein aggregation during stationary phase facilitating antibiotic persistence.
Antimicrob Agents Chemother. 2024 Feb 7;68(2):e0093723. doi: 10.1128/aac.00937-23. Epub 2024 Jan 3.
9
Inference of transcriptome signatures of Escherichia coli in long-term stationary phase.
Sci Rep. 2023 Apr 6;13(1):5647. doi: 10.1038/s41598-023-32525-4.
10
SigE: A master regulator of .
Front Microbiol. 2023 Mar 7;14:1075143. doi: 10.3389/fmicb.2023.1075143. eCollection 2023.

本文引用的文献

1
Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.
Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):537-549. doi: 10.1016/j.bbamem.2016.09.025. Epub 2016 Sep 30.
2
The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.
Curr Genet. 2017 Feb;63(1):79-90. doi: 10.1007/s00294-016-0624-0. Epub 2016 Jun 25.
3
The Phage Shock Protein Response.
Annu Rev Microbiol. 2016 Sep 8;70:83-101. doi: 10.1146/annurev-micro-102215-095359. Epub 2016 Jun 8.
5
Classic Spotlight: Staying in Shape and Discovery of the mrdAB and mreBCD Operons.
J Bacteriol. 2016 Apr 28;198(10):1479. doi: 10.1128/JB.00180-16. Print 2016 May 15.
6
Rv2744c Is a PspA Ortholog That Regulates Lipid Droplet Homeostasis and Nonreplicating Persistence in Mycobacterium tuberculosis.
J Bacteriol. 2016 May 13;198(11):1645-1661. doi: 10.1128/JB.01001-15. Print 2016 Jun 1.
7
Anatomy of the bacitracin resistance network in Bacillus subtilis.
Mol Microbiol. 2016 May;100(4):607-20. doi: 10.1111/mmi.13336. Epub 2016 Mar 10.
8
Taxonomy, Physiology, and Natural Products of Actinobacteria.
Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43. doi: 10.1128/MMBR.00019-15. Print 2016 Mar.
9
Assembly of the Mycobacterial Cell Wall.
Annu Rev Microbiol. 2015;69:405-23. doi: 10.1146/annurev-micro-091014-104121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验