Bryant Fred B
Professor, Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA.
J Eval Clin Pract. 2016 Dec;22(6):829-834. doi: 10.1111/jep.12669.
This paper introduces a special section of the current issue of the Journal of Evaluation in Clinical Practice that includes a set of 6 empirical articles showcasing a versatile, new machine-learning statistical method, known as optimal data (or discriminant) analysis (ODA), specifically designed to produce statistical models that maximize predictive accuracy. As this set of papers clearly illustrates, ODA offers numerous important advantages over traditional statistical methods-advantages that enhance the validity and reproducibility of statistical conclusions in empirical research. This issue of the journal also includes a review of a recently published book that provides a comprehensive introduction to the logic, theory, and application of ODA in empirical research. It is argued that researchers have much to gain by using ODA to analyze their data.
本文介绍了《临床实践评估杂志》本期的一个特别版块,其中包含一组6篇实证文章,展示了一种通用的新型机器学习统计方法,即最优数据(或判别)分析(ODA),该方法专门设计用于生成能使预测准确性最大化的统计模型。正如这组论文清楚表明的那样,ODA相对于传统统计方法具有诸多重要优势——这些优势增强了实证研究中统计结论的有效性和可重复性。该期刊的这一期还包括对最近出版的一本书的评论,该书全面介绍了ODA在实证研究中的逻辑、理论和应用。有人认为,研究人员使用ODA分析他们的数据会有很多收获。