Suppr超能文献

提高临床评估研究中的预测准确性和可重复性:对《临床实践评估杂志》特刊的评论

Enhancing predictive accuracy and reproducibility in clinical evaluation research: Commentary on the special section of the Journal of Evaluation in Clinical Practice.

作者信息

Bryant Fred B

机构信息

Professor, Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA.

出版信息

J Eval Clin Pract. 2016 Dec;22(6):829-834. doi: 10.1111/jep.12669.

Abstract

This paper introduces a special section of the current issue of the Journal of Evaluation in Clinical Practice that includes a set of 6 empirical articles showcasing a versatile, new machine-learning statistical method, known as optimal data (or discriminant) analysis (ODA), specifically designed to produce statistical models that maximize predictive accuracy. As this set of papers clearly illustrates, ODA offers numerous important advantages over traditional statistical methods-advantages that enhance the validity and reproducibility of statistical conclusions in empirical research. This issue of the journal also includes a review of a recently published book that provides a comprehensive introduction to the logic, theory, and application of ODA in empirical research. It is argued that researchers have much to gain by using ODA to analyze their data.

摘要

本文介绍了《临床实践评估杂志》本期的一个特别版块,其中包含一组6篇实证文章,展示了一种通用的新型机器学习统计方法,即最优数据(或判别)分析(ODA),该方法专门设计用于生成能使预测准确性最大化的统计模型。正如这组论文清楚表明的那样,ODA相对于传统统计方法具有诸多重要优势——这些优势增强了实证研究中统计结论的有效性和可重复性。该期刊的这一期还包括对最近出版的一本书的评论,该书全面介绍了ODA在实证研究中的逻辑、理论和应用。有人认为,研究人员使用ODA分析他们的数据会有很多收获。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验