Suppr超能文献

论学习违反家族相似性原则的自然科学范畴

On Learning Natural-Science Categories That Violate the Family-Resemblance Principle.

机构信息

1 Department of Psychological and Brain Sciences, Indiana University Bloomington.

2 Department of Geological Sciences, Indiana University Bloomington.

出版信息

Psychol Sci. 2017 Jan;28(1):104-114. doi: 10.1177/0956797616675636. Epub 2016 Nov 23.

Abstract

The general view in psychological science is that natural categories obey a coherent, family-resemblance principle. In this investigation, we documented an example of an important exception to this principle: Results of a multidimensional-scaling study of igneous, metamorphic, and sedimentary rocks (Experiment 1) suggested that the structure of these categories is disorganized and dispersed. This finding motivated us to explore what might be the optimal procedures for teaching dispersed categories, a goal that is likely critical to science education in general. Subjects in Experiment 2 learned to classify pictures of rocks into compact or dispersed high-level categories. One group learned the categories through focused high-level training, whereas a second group was required to simultaneously learn classifications at a subtype level. Although high-level training led to enhanced performance when the categories were compact, subtype training was better when the categories were dispersed. We provide an interpretation of the results in terms of an exemplar-memory model of category learning.

摘要

心理学界的普遍观点认为,自然类别遵循一致的、家族相似性原则。在这项研究中,我们记录了该原则的一个重要例外:对火成岩、变质岩和沉积岩的多维标度研究的结果(实验 1)表明,这些类别的结构是无组织和分散的。这一发现促使我们探索教授分散类别可能的最佳程序,这一目标可能对一般科学教育至关重要。实验 2 中的受试者学习将岩石的图片分类为紧凑或分散的高级别类别。一组通过集中的高级别训练来学习类别,而另一组则需要同时学习子类型级别的分类。尽管在类别紧凑时高级别训练会导致表现提高,但在类别分散时子类型训练效果更好。我们根据类别学习的范例记忆模型来解释结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验