Suppr超能文献

在高维自然科学类别领域中对分类学习范例记忆模型的测试。

Tests of an exemplar-memory model of classification learning in a high-dimensional natural-science category domain.

机构信息

Psychological and Brain Sciences, Indiana University Bloomington.

Psychological and Brain Sciences, Washington University in St. Louis.

出版信息

J Exp Psychol Gen. 2018 Mar;147(3):328-353. doi: 10.1037/xge0000369. Epub 2017 Oct 23.

Abstract

Experiments were conducted in which novice participants learned to classify pictures of rocks into real-world, scientifically defined categories. The experiments manipulated the distribution of training instances during an initial study phase, and then tested for correct classification and generalization performance during a transfer phase. The similarity structure of the to-be-learned categories was also manipulated across the experiments. A low-parameter version of an exemplar-memory model, used in combination with a high-dimensional feature-space representation for the rock stimuli, provided good overall accounts of the categorization data. The successful accounts included (a) predicting how performance on individual item types within the categories varied with the distributions of training examples, (b) predicting the overall levels of classification accuracy across the different rock categories, and (c) predicting the patterns of between-category confusions that arose when classification errors were made. The work represents a promising initial step in scaling up the application of formal models of perceptual classification learning to complex natural-category domains. We discuss further steps for making use of the model and its associated feature-space representation to search for effective techniques of teaching categories in the science classroom. (PsycINFO Database Record

摘要

实验中,新手参与者学习将岩石图片分类为真实世界中科学定义的类别。实验在初始学习阶段操纵训练实例的分布,然后在转移阶段测试正确分类和泛化性能。在实验中还操纵了待学习类别的相似性结构。示例记忆模型的低参数版本与岩石刺激的高维特征空间表示相结合,为分类数据提供了很好的总体解释。成功的解释包括:(a)预测类别内个别项目类型的表现如何随训练示例的分布而变化;(b)预测不同岩石类别的整体分类准确性水平;(c)预测当发生分类错误时出现的类别间混淆模式。这项工作代表了将形式化感知分类学习模型的应用扩展到复杂自然类别领域的一个有希望的初步步骤。我们讨论了进一步利用模型及其相关特征空间表示来寻找科学课堂中教授类别的有效技术的步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验