Bethel Neville P, Grabe Michael
Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158.
Graduate Group in Biophysics, University of California, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14049-14054. doi: 10.1073/pnas.1607574113. Epub 2016 Nov 21.
The transmembrane protein 16 (TMEM16) family of membrane proteins includes both lipid scramblases and ion channels involved in olfaction, nociception, and blood coagulation. The crystal structure of the fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase suggested a putative mechanism of lipid transport, whereby polar and charged lipid headgroups move through the low-dielectric environment of the membrane by traversing a hydrophilic groove on the membrane-spanning surface of the protein. Here, we use computational methods to explore the membrane-protein interactions involved in lipid scrambling. Fast, continuum membrane-bending calculations reveal a global pattern of charged and hydrophobic surface residues that bends the membrane in a large-amplitude sinusoidal wave, resulting in bilayer thinning across the hydrophilic groove. Atomic simulations uncover two lipid headgroup-interaction sites flanking the groove. The cytoplasmic site nucleates headgroup-dipole stacking interactions that form a chain of lipid molecules that penetrate into the groove. In two instances, a cytoplasmic lipid interdigitates into this chain, crosses the bilayer, and enters the extracellular leaflet, and the reverse process happens twice as well. Continuum membrane-bending analysis carried out on homology models of mammalian homologs shows that these family members also bend the membrane-even those that lack scramblase activity. Sequence alignments show that the lipid-interaction sites are conserved in many family members but less so in those with reduced scrambling ability. Our analysis provides insight into how large-scale membrane bending and protein chemistry facilitate lipid permeation in the TMEM16 family, and we hypothesize that membrane interactions also affect ion permeation.
跨膜蛋白16(TMEM16)家族的膜蛋白包括参与嗅觉、伤害感受和血液凝固的脂质翻转酶和离子通道。真菌血红红球菌TMEM16(nhTMEM16)翻转酶的晶体结构提示了一种脂质转运的假定机制,即极性和带电荷的脂质头部基团通过穿越蛋白质跨膜表面上的亲水凹槽,在低介电常数的膜环境中移动。在此,我们使用计算方法来探索参与脂质翻转的膜-蛋白相互作用。快速的连续膜弯曲计算揭示了带电荷和疏水表面残基的全局模式,该模式以大幅度正弦波弯曲膜,导致亲水凹槽处的双层变薄。原子模拟揭示了凹槽两侧的两个脂质头部基团相互作用位点。胞质位点引发头部基团-偶极堆积相互作用,形成一条脂质分子链,该链穿透进入凹槽。在两个实例中,一个胞质脂质插入该链,穿过双层并进入细胞外小叶,反之亦然的过程也发生了两次。对哺乳动物同源物的同源模型进行的连续膜弯曲分析表明,这些家族成员也会使膜弯曲——即使是那些缺乏翻转酶活性的成员。序列比对表明,脂质相互作用位点在许多家族成员中是保守的,但在那些翻转能力降低的成员中保守性较低。我们的分析深入了解了大规模膜弯曲和蛋白质化学如何促进TMEM16家族中的脂质渗透,并且我们推测膜相互作用也会影响离子渗透。