Suppr超能文献

一种肽类异戊二烯基转移酶广泛底物选择性的分子基础。

Molecular basis for the broad substrate selectivity of a peptide prenyltransferase.

作者信息

Hao Yue, Pierce Elizabeth, Roe Daniel, Morita Maho, McIntosh John A, Agarwal Vinayak, Cheatham Thomas E, Schmidt Eric W, Nair Satish K

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112.

出版信息

Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14037-14042. doi: 10.1073/pnas.1609869113. Epub 2016 Nov 21.

Abstract

The cyanobactin prenyltransferases catalyze a series of known or unprecedented reactions on millions of different substrates, with no easily observable recognition motif and exquisite regioselectivity. Here we define the basis of broad substrate tolerance for the otherwise uncharacterized TruF family. We determined the structures of the Tyr-prenylating enzyme PagF, in complex with an isoprenoid donor analog and a panel of linear and macrocyclic peptide substrates. Unexpectedly, the structures reveal a truncated barrel fold, wherein binding of large peptide substrates is necessary to complete a solvent-exposed hydrophobic pocket to form the catalytically competent active site. Kinetic, mutational, chemical, and computational analyses revealed the structural basis of selectivity, showing a small motif within peptide substrates that is sufficient for recognition by the enzyme. Attaching this 2-residue motif to two random peptides results in their isoprenylation by PagF, demonstrating utility as a general biocatalytic platform for modifications on any peptide substrate.

摘要

蓝细菌素异戊烯基转移酶可催化数百万种不同底物上的一系列已知或前所未有的反应,其没有易于观察到的识别基序且具有精确的区域选择性。在此,我们确定了原本未被表征的TruF家族具有广泛底物耐受性的基础。我们测定了酪氨酸异戊烯基化酶PagF与类异戊二烯供体类似物以及一系列线性和大环肽底物形成复合物时的结构。出乎意料的是,这些结构揭示了一种截短的桶状折叠,其中大肽底物的结合对于形成一个溶剂暴露的疏水口袋以形成具有催化活性的活性位点是必要的。动力学、突变、化学和计算分析揭示了选择性的结构基础,表明肽底物中的一个小基序足以被该酶识别。将这个二残基基序连接到两个随机肽上会导致它们被PagF异戊烯基化,证明了其作为对任何肽底物进行修饰的通用生物催化平台的实用性。

相似文献

1
Molecular basis for the broad substrate selectivity of a peptide prenyltransferase.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14037-14042. doi: 10.1073/pnas.1609869113. Epub 2016 Nov 21.
2
Catalysts for the Enzymatic Lipidation of Peptides.
Acc Chem Res. 2022 May 3;55(9):1313-1323. doi: 10.1021/acs.accounts.2c00108. Epub 2022 Apr 20.
3
N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway.
Biochemistry. 2018 Dec 18;57(50):6860-6867. doi: 10.1021/acs.biochem.8b00879. Epub 2018 Dec 3.
4
Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3.
Angew Chem Int Ed Engl. 2018 Jan 8;57(2):560-563. doi: 10.1002/anie.201710682. Epub 2017 Dec 15.
6
Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases.
J Am Chem Soc. 2023 Nov 8;145(44):23893-23898. doi: 10.1021/jacs.3c07373. Epub 2023 Oct 25.
8
Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity.
J Mol Biol. 2012 Sep 7;422(1):87-99. doi: 10.1016/j.jmb.2012.05.033. Epub 2012 Jun 6.
9
Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an -prenyltransferase.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12799-12805. doi: 10.1073/pnas.2001325117. Epub 2020 May 26.
10
Enzymatic basis of ribosomal peptide prenylation in cyanobacteria.
J Am Chem Soc. 2011 Aug 31;133(34):13698-705. doi: 10.1021/ja205458h. Epub 2011 Aug 4.

引用本文的文献

1
Biosynthesis of guanidine-containing natural products in cyanobacteria.
J Ind Microbiol Biotechnol. 2024 Dec 31;52. doi: 10.1093/jimb/kuaf024.
2
Design and Production of Geranylated Cyclic Peptides by the RiPP Enzymes SyncM and PirF.
Biomacromolecules. 2025 May 12;26(5):3186-3199. doi: 10.1021/acs.biomac.5c00260. Epub 2025 Apr 6.
3
De novo design of ribosomally synthesized and post-translationally modified peptides.
Nat Chem. 2025 Feb;17(2):233-245. doi: 10.1038/s41557-024-01685-9. Epub 2025 Jan 7.
4
Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532.
J Nat Prod. 2025 Jan 24;88(1):86-93. doi: 10.1021/acs.jnatprod.4c01063. Epub 2024 Dec 24.
5
Ribosomal peptides with polycyclic isoprenoid moieties.
Chem. 2024 Oct 10;10(10):3224-3242. doi: 10.1016/j.chempr.2024.07.026. Epub 2024 Sep 6.
6
Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ.
Adv Sci (Weinh). 2024 Feb;11(6):e2307372. doi: 10.1002/advs.202307372. Epub 2023 Dec 7.
8
Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization.
Chembiochem. 2023 Sep 1;24(17):e202300372. doi: 10.1002/cbic.202300372. Epub 2023 Jul 19.
10
Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides.
Angew Chem Int Ed Engl. 2023 Apr 11;62(16):e202215979. doi: 10.1002/anie.202215979. Epub 2023 Mar 10.

本文引用的文献

1
Metabolic model for diversity-generating biosynthesis.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1772-7. doi: 10.1073/pnas.1525438113. Epub 2016 Feb 1.
2
Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks.
Biochim Biophys Acta. 2015 Aug;1854(8):1019-37. doi: 10.1016/j.bbapap.2015.04.015. Epub 2015 Apr 18.
3
The structural biology of patellamide biosynthesis.
Curr Opin Struct Biol. 2014 Dec;29:112-121. doi: 10.1016/j.sbi.2014.10.006. Epub 2014 Nov 25.
4
Protein prenylation: enzymes, therapeutics, and biotechnology applications.
ACS Chem Biol. 2015 Jan 16;10(1):51-62. doi: 10.1021/cb500791f. Epub 2014 Dec 8.
5
Mechanistic studies on the indole prenyltransferases.
Nat Prod Rep. 2015 Jan;32(1):88-101. doi: 10.1039/c4np00099d.
6
Assessing the combinatorial potential of the RiPP cyanobactin tru pathway.
ACS Synth Biol. 2015 Apr 17;4(4):482-92. doi: 10.1021/sb500267d. Epub 2014 Sep 2.
7
Recognition sequences and substrate evolution in cyanobactin biosynthesis.
ACS Synth Biol. 2015 Feb 20;4(2):167-76. doi: 10.1021/sb500019b. Epub 2014 Mar 26.
8
Catalytic mechanism of stereospecific formation of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases.
Chem Biol. 2013 Dec 19;20(12):1492-501. doi: 10.1016/j.chembiol.2013.10.007. Epub 2013 Nov 14.
9
Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.
Chem Biol. 2013 Aug 22;20(8):1033-43. doi: 10.1016/j.chembiol.2013.06.015. Epub 2013 Aug 1.
10
Structure of PatF from Prochloron didemni.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jun;69(Pt 6):618-23. doi: 10.1107/S1744309113012931. Epub 2013 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验