Suppr超能文献

蓝藻核糖体肽类异戊烯化的酶学基础。

Enzymatic basis of ribosomal peptide prenylation in cyanobacteria.

机构信息

Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.

出版信息

J Am Chem Soc. 2011 Aug 31;133(34):13698-705. doi: 10.1021/ja205458h. Epub 2011 Aug 4.

Abstract

The enzymatic basis of ribosomal peptide natural product prenylation has not been reported. Here, we characterize a prenyltransferase, LynF, from the TruF enzyme family. LynF is the first characterized representative of the TruF protein family, which is responsible for both reverse- and forward-O-prenylation of tyrosine, serine, and threonine in cyclic peptides known as cyanobactins. We show that LynF reverse O-prenylates tyrosine in macrocyclic peptides. Based upon these results, we propose that the TruF family prenylates mature cyclic peptides, from which the leader sequence and other enzyme recognition elements have been excised. This differs from the common model of ribosomal peptide biosynthesis, in which a leader sequence is required to direct post-translational modifications. In addition, we find that reverse O-prenylated tyrosine derivatives undergo a facile Claisen rearrangement at 'physiological' temperature in aqueous buffers, leading to forward C-prenylated products. Although the Claisen rearrangement route to natural products has been chemically anticipated for at least 40 years, it has not been demonstrated as a route to prenylated natural products. Here, we show that the Claisen rearrangement drives phenolic C-prenylation in at least one case, suggesting that this route should be reconsidered as a mechanism for the biosynthesis of prenylated phenolic compounds.

摘要

核糖体肽天然产物的酶促基础尚未被报道。在这里,我们描述了 LynF,它是 TruF 酶家族的一种烯基转移酶。LynF 是 TruF 蛋白家族的第一个特征代表,该家族负责将酪氨酸、丝氨酸和苏氨酸的反向-O-和正向-O-烯基化,这些氨基酸存在于称为蓝细菌素的环状肽中。我们证明 LynF 能够在大环肽中反向 O-烯基化酪氨酸。基于这些结果,我们提出 TruF 家族烯基化成熟的环状肽,这些肽已经切除了前导序列和其他酶识别元件。这与核糖体肽生物合成的常见模型不同,后者需要前导序列来指导翻译后修饰。此外,我们发现反向 O-烯基化的酪氨酸衍生物在水性缓冲液中“生理”温度下容易发生克莱森重排,生成正向 C-烯基化产物。尽管化学上已经预测到克莱森重排途径至少有 40 年了,但它尚未被证明是一种制备烯基化天然产物的途径。在这里,我们表明克莱森重排至少在一种情况下驱动酚类 C-烯基化,这表明该途径应该重新被视为制备烯基化酚类化合物的生物合成机制。

相似文献

1
Enzymatic basis of ribosomal peptide prenylation in cyanobacteria.
J Am Chem Soc. 2011 Aug 31;133(34):13698-705. doi: 10.1021/ja205458h. Epub 2011 Aug 4.
2
Pericyclic prenylation: peptide modification through a Claisen rearrangement.
Chembiochem. 2011 Dec 16;12(18):2723-6. doi: 10.1002/cbic.201100612. Epub 2011 Nov 24.
3
Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8460-8465. doi: 10.1002/anie.202015975. Epub 2021 Mar 5.
5
De Novo Discovery of Pseudo-Natural Prenylated Macrocyclic Peptide Ligands.
Angew Chem Int Ed Engl. 2024 Sep 2;63(36):e202409973. doi: 10.1002/anie.202409973. Epub 2024 Jul 22.
6
N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway.
Biochemistry. 2018 Dec 18;57(50):6860-6867. doi: 10.1021/acs.biochem.8b00879. Epub 2018 Dec 3.
7
Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements.
ACS Chem Biol. 2013 May 17;8(5):877-83. doi: 10.1021/cb300614c. Epub 2013 Feb 22.
8
A Unique Tryptophan C-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3596-9. doi: 10.1002/anie.201509920. Epub 2016 Feb 5.
9
Molecular basis for the broad substrate selectivity of a peptide prenyltransferase.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14037-14042. doi: 10.1073/pnas.1609869113. Epub 2016 Nov 21.
10
Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives.
ACS Chem Biol. 2013 Dec 20;8(12):2707-14. doi: 10.1021/cb400691z. Epub 2013 Oct 14.

引用本文的文献

1
Biosynthesis of guanidine-containing natural products in cyanobacteria.
J Ind Microbiol Biotechnol. 2024 Dec 31;52. doi: 10.1093/jimb/kuaf024.
2
RiPP Enzymes for Biosynthetically Derived Cyclic Peptide Libraries.
Methods Mol Biol. 2025;2934:233-243. doi: 10.1007/978-1-0716-4578-9_16.
3
Design and Production of Geranylated Cyclic Peptides by the RiPP Enzymes SyncM and PirF.
Biomacromolecules. 2025 May 12;26(5):3186-3199. doi: 10.1021/acs.biomac.5c00260. Epub 2025 Apr 6.
4
Genome Mining for New Enzyme Chemistry.
ACS Catal. 2024 Mar 12;14(7):4536-4553. doi: 10.1021/acscatal.3c06322. eCollection 2024 Apr 5.
5
Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ.
Adv Sci (Weinh). 2024 Feb;11(6):e2307372. doi: 10.1002/advs.202307372. Epub 2023 Dec 7.
7
Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides.
Angew Chem Int Ed Engl. 2023 Apr 11;62(16):e202215979. doi: 10.1002/anie.202215979. Epub 2023 Mar 10.
8
Emulating nonribosomal peptides with ribosomal biosynthetic strategies.
RSC Chem Biol. 2022 Dec 6;4(1):7-36. doi: 10.1039/d2cb00169a. eCollection 2023 Jan 4.
9
The increasing role of structural proteomics in cyanobacteria.
Essays Biochem. 2023 Mar 29;67(2):269-282. doi: 10.1042/EBC20220095.
10
Biochemical characterization of a cyanobactin arginine--prenylase from the autumnalamide biosynthetic pathway.
Chem Commun (Camb). 2022 Oct 27;58(86):12054-12057. doi: 10.1039/d2cc01799g.

本文引用的文献

2
Linking chemistry and genetics in the growing cyanobactin natural products family.
Chem Biol. 2011 Apr 22;18(4):508-19. doi: 10.1016/j.chembiol.2011.01.019.
3
Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity.
J Am Chem Soc. 2010 Dec 22;132(50):17849-58. doi: 10.1021/ja106817c. Epub 2010 Nov 24.
4
Catalytic enantioselective claisen rearrangements of O-allyl β-ketoesters.
Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9753-6. doi: 10.1002/anie.201005183.
5
The tyrosine O-prenyltransferase SirD catalyzes O-, N-, and C-prenylations.
Appl Microbiol Biotechnol. 2011 Mar;89(5):1443-51. doi: 10.1007/s00253-010-2956-x. Epub 2010 Oct 31.
6
Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst.
J Am Chem Soc. 2010 Nov 10;132(44):15499-501. doi: 10.1021/ja1067806.
8
Marine molecular machines: heterocyclization in cyanobactin biosynthesis.
Chembiochem. 2010 Jul 5;11(10):1413-21. doi: 10.1002/cbic.201000196.
9
Understanding and exploiting protein prenyltransferases.
Chembiochem. 2010 Jun 14;11(9):1194-201. doi: 10.1002/cbic.200900727.
10
Insights into heterocyclization from two highly similar enzymes.
J Am Chem Soc. 2010 Mar 31;132(12):4089-91. doi: 10.1021/ja9107116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验