Suppr超能文献

基于深度学习和剪切波变换的微观医学图像分类框架

Microscopic medical image classification framework via deep learning and shearlet transform.

作者信息

Rezaeilouyeh Hadi, Mollahosseini Ali, Mahoor Mohammad H

机构信息

University of Denver , Department of Electrical and Computer Engineering, 2155 East Wesley Avenue, Denver, Colorado 80208, United States.

出版信息

J Med Imaging (Bellingham). 2016 Oct;3(4):044501. doi: 10.1117/1.JMI.3.4.044501. Epub 2016 Nov 3.

Abstract

Cancer is the second leading cause of death in US after cardiovascular disease. Image-based computer-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture, structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features. A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as extra information to the network can improve the accuracy of detection and generalize better compared to the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep neural networks into the field of medical image analysis, which is a difficult domain considering the limited medical data available for such analysis.

摘要

癌症是美国仅次于心血管疾病的第二大死因。基于图像的计算机辅助诊断可以帮助医生有效地在早期阶段诊断癌症。现有的计算机辅助算法使用手工制作的特征,如小波系数、共生矩阵特征,以及最近用于图像中癌组织和癌细胞分类的剪切波系数直方图。这些手工制作的特征往往缺乏通用性,因为每个癌组织和细胞都有特定的纹理、结构和形状。另一种方法是使用卷积神经网络(CNN)直接从数据中学习最合适的特征抽象,并处理手工制作特征的局限性。本文提出了一个使用在图像以及剪切波系数的幅度和相位上训练的CNN进行乳腺癌检测和前列腺Gleason分级的框架。具体来说,我们对图像应用剪切波变换,并提取剪切波系数的幅度和相位。然后,我们将剪切波特征与原始图像一起输入到由多层卷积、最大池化和全连接层组成的CNN中。我们的实验表明,与依赖手工制作特征的现有方法相比,将剪切波系数的幅度和相位作为网络的额外信息可以提高检测的准确性并具有更好的泛化能力。这项研究将深度神经网络的应用扩展到医学图像分析领域,考虑到可用于此类分析的医学数据有限,这是一个困难的领域。

相似文献

1
Microscopic medical image classification framework via deep learning and shearlet transform.
J Med Imaging (Bellingham). 2016 Oct;3(4):044501. doi: 10.1117/1.JMI.3.4.044501. Epub 2016 Nov 3.
2
Aiding the Digital Mammogram for Detecting the Breast Cancer Using Shearlet Transform and Neural Network.
Asian Pac J Cancer Prev. 2018 Sep 26;19(9):2665-2671. doi: 10.22034/APJCP.2018.19.9.2665.
3
Hybrid Unified Deep Learning Network for Highly Precise Gleason Grading of Prostate Cancer.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:899-903. doi: 10.1109/EMBC.2019.8856912.
4
Deep Shearlet Residual Learning Network for Single Image Super-Resolution.
IEEE Trans Image Process. 2021;30:4129-4142. doi: 10.1109/TIP.2021.3069317. Epub 2021 Apr 9.
6
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
Med Image Anal. 2017 Dec;42:212-227. doi: 10.1016/j.media.2017.08.006. Epub 2017 Aug 24.
7
Texture features in the Shearlet domain for histopathological image classification.
BMC Med Inform Decis Mak. 2020 Dec 15;20(Suppl 14):312. doi: 10.1186/s12911-020-01327-3.
8
Advanced feature learning and classification of microscopic breast abnormalities using a robust deep transfer learning technique.
Microsc Res Tech. 2024 Aug;87(8):1862-1888. doi: 10.1002/jemt.24557. Epub 2024 Mar 30.
9
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
10
ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features.
Comput Methods Programs Biomed. 2021 Sep;208:106269. doi: 10.1016/j.cmpb.2021.106269. Epub 2021 Jul 13.

引用本文的文献

2
Emerging trends and research foci of deep learning in spine: bibliometric and visualization study.
Neurosurg Rev. 2023 Mar 31;46(1):81. doi: 10.1007/s10143-023-01987-5.
4
Progress on deep learning in digital pathology of breast cancer: a narrative review.
Gland Surg. 2022 Apr;11(4):751-766. doi: 10.21037/gs-22-11.
5
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.
Front Oncol. 2022 Mar 1;12:843735. doi: 10.3389/fonc.2022.843735. eCollection 2022.
6
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis.
Healthcare (Basel). 2021 Dec 22;10(1):10. doi: 10.3390/healthcare10010010.
7
A Review of Computer-Aided Expert Systems for Breast Cancer Diagnosis.
Cancers (Basel). 2021 Jun 2;13(11):2764. doi: 10.3390/cancers13112764.
8
Boosting Breast Cancer Detection Using Convolutional Neural Network.
J Healthc Eng. 2021 Apr 3;2021:5528622. doi: 10.1155/2021/5528622. eCollection 2021.
9
Complementary performances of convolutional and capsule neural networks on classifying microfluidic images of dividing yeast cells.
PLoS One. 2021 Mar 17;16(3):e0246988. doi: 10.1371/journal.pone.0246988. eCollection 2021.

本文引用的文献

1
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
2
Diagnosis of prostatic carcinoma on multiparametric magnetic resonance imaging using shearlet transform.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6442-5. doi: 10.1109/EMBC.2014.6945103.
3
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
4
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
5
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):254-61. doi: 10.1007/978-3-642-40763-5_32.
6
Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
7
Shearlet-based total variation diffusion for denoising.
IEEE Trans Image Process. 2009 Feb;18(2):260-8. doi: 10.1109/TIP.2008.2008070. Epub 2008 Dec 16.
8
Multifeature prostate cancer diagnosis and Gleason grading of histological images.
IEEE Trans Med Imaging. 2007 Oct;26(10):1366-78. doi: 10.1109/TMI.2007.898536.
9
Multiwavelet grading of pathological images of prostate.
IEEE Trans Biomed Eng. 2003 Jun;50(6):697-704. doi: 10.1109/TBME.2003.812194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验