文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种新的基于 circlets 和小波组合的卷积神经网络,用于黄斑 OCT 分类。

A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification.

机构信息

Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.

Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.

出版信息

Sci Rep. 2023 Dec 19;13(1):22582. doi: 10.1038/s41598-023-50164-7.


DOI:10.1038/s41598-023-50164-7
PMID:38114582
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10730902/
Abstract

Artificial intelligence (AI) algorithms, encompassing machine learning and deep learning, can assist ophthalmologists in early detection of various ocular abnormalities through the analysis of retinal optical coherence tomography (OCT) images. Despite considerable progress in these algorithms, several limitations persist in medical imaging fields, where a lack of data is a common issue. Accordingly, specific image processing techniques, such as time-frequency transforms, can be employed in conjunction with AI algorithms to enhance diagnostic accuracy. This research investigates the influence of non-data-adaptive time-frequency transforms, specifically X-lets, on the classification of OCT B-scans. For this purpose, each B-scan was transformed using every considered X-let individually, and all the sub-bands were utilized as the input for a designed 2D Convolutional Neural Network (CNN) to extract optimal features, which were subsequently fed to the classifiers. Evaluating per-class accuracy shows that the use of the 2D Discrete Wavelet Transform (2D-DWT) yields superior outcomes for normal cases, whereas the circlet transform outperforms other X-lets for abnormal cases characterized by circles in their retinal structure (due to the accumulation of fluid). As a result, we propose a novel transform named CircWave by concatenating all sub-bands from the 2D-DWT and the circlet transform. The objective is to enhance the per-class accuracy of both normal and abnormal cases simultaneously. Our findings show that classification results based on the CircWave transform outperform those derived from original images or any individual transform. Furthermore, Grad-CAM class activation visualization for B-scans reconstructed from CircWave sub-bands highlights a greater emphasis on circular formations in abnormal cases and straight lines in normal cases, in contrast to the focus on irrelevant regions in original B-scans. To assess the generalizability of our method, we applied it to another dataset obtained from a different imaging system. We achieved promising accuracies of 94.5% and 90% for the first and second datasets, respectively, which are comparable with results from previous studies. The proposed CNN based on CircWave sub-bands (i.e. CircWaveNet) not only produces superior outcomes but also offers more interpretable results with a heightened focus on features crucial for ophthalmologists.

摘要

人工智能(AI)算法,包括机器学习和深度学习,可以通过分析视网膜光学相干断层扫描(OCT)图像来帮助眼科医生早期发现各种眼部异常。尽管这些算法取得了相当大的进展,但在医学成像领域仍存在一些局限性,其中数据缺乏是一个常见问题。因此,可以结合 AI 算法使用特定的图像处理技术,如时频变换,以提高诊断准确性。本研究探讨了非数据自适应时频变换(特别是 X 波)对 OCT B 扫描分类的影响。为此,使用每个考虑的 X 波单独对每个 B 扫描进行变换,并将所有子带用作设计的二维卷积神经网络(CNN)的输入,以提取最佳特征,然后将这些特征馈送到分类器中。逐类准确性评估表明,对于正常情况,使用二维离散小波变换(2D-DWT)会产生更好的结果,而对于其视网膜结构中存在圆形的异常情况(由于液体积累),circlet 变换优于其他 X 波。因此,我们提出了一种新的变换,称为 CircWave,它通过串联 2D-DWT 和 circlet 变换的所有子带。目的是同时提高正常和异常情况下的逐类准确性。我们的研究结果表明,基于 CircWave 变换的分类结果优于原始图像或任何单个变换的结果。此外,CircWave 子带重建的 B 扫描的 Grad-CAM 类激活可视化突出了异常情况下对圆形结构的更大关注和正常情况下对直线的关注,与原始 B 扫描中对不相关区域的关注形成对比。为了评估我们方法的泛化能力,我们将其应用于另一个来自不同成像系统的数据集。我们分别获得了第一个和第二个数据集的 94.5%和 90%的有希望的准确性,这与以前的研究结果相当。基于 CircWave 子带的提出的 CNN(即 CircWaveNet)不仅产生了更好的结果,而且还提供了更具可解释性的结果,更加关注对眼科医生至关重要的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7f145823a9e0/41598_2023_50164_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/1e5a9dbcaf6e/41598_2023_50164_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/a14e9bb95fbc/41598_2023_50164_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/c8eb682b1e80/41598_2023_50164_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/07fe03a8074b/41598_2023_50164_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7bc9f2d27ba7/41598_2023_50164_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/197e059b2436/41598_2023_50164_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/e49e765ecf60/41598_2023_50164_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/be03aa22eb84/41598_2023_50164_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/a75e79f43c6f/41598_2023_50164_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7b8156ff0a97/41598_2023_50164_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/b38521997fb0/41598_2023_50164_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7f145823a9e0/41598_2023_50164_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/1e5a9dbcaf6e/41598_2023_50164_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/a14e9bb95fbc/41598_2023_50164_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/c8eb682b1e80/41598_2023_50164_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/07fe03a8074b/41598_2023_50164_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7bc9f2d27ba7/41598_2023_50164_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/197e059b2436/41598_2023_50164_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/e49e765ecf60/41598_2023_50164_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/be03aa22eb84/41598_2023_50164_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/a75e79f43c6f/41598_2023_50164_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7b8156ff0a97/41598_2023_50164_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/b38521997fb0/41598_2023_50164_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c539/10730902/7f145823a9e0/41598_2023_50164_Fig12_HTML.jpg

相似文献

[1]
A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification.

Sci Rep. 2023-12-19

[2]
CircWaveDL: Modeling of optical coherence tomography images based on a new supervised tensor-based dictionary learning for classification of macular abnormalities.

Artif Intell Med. 2025-2

[3]
Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT.

Brain Sci. 2023-2-17

[4]
OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.

Graefes Arch Clin Exp Ophthalmol. 2018-1

[5]
Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

J Biomed Opt. 2018-3

[6]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[7]
Detection of Retinal Abnormalities in OCT Images Using Wavelet Scattering Network.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[8]
Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.

Sensors (Basel). 2019-7-5

[9]
Optimal Deep Learning Architecture for Automated Segmentation of Cysts in OCT Images Using X-Let Transforms.

Diagnostics (Basel). 2023-6-7

[10]
Geometrical X-lets for Image Denoising.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

本文引用的文献

[1]
Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction.

Mult Scler Relat Disord. 2024-8

[2]
Wavelet scattering transform application in classification of retinal abnormalities using OCT images.

Sci Rep. 2023-11-3

[3]
Optimal Deep Learning Architecture for Automated Segmentation of Cysts in OCT Images Using X-Let Transforms.

Diagnostics (Basel). 2023-6-7

[4]
Distinctions between Choroidal Neovascularization and Age Macular Degeneration in Ocular Disease Predictions via Multi-Size Kernels ξcho-Weighted Median Patterns.

Diagnostics (Basel). 2023-2-14

[5]
Performance evaluation of various deep learning based models for effective glaucoma evaluation using optical coherence tomography images.

Multimed Tools Appl. 2022

[6]
MHANet: A hybrid attention mechanism for retinal diseases classification.

PLoS One. 2021

[7]
Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising.

IEEE Trans Med Imaging. 2021-8

[8]
Weakly supervised detection of central serous chorioretinopathy based on local binary patterns and discrete wavelet transform.

Comput Biol Med. 2020-12

[9]
A review of the application of deep learning in medical image classification and segmentation.

Ann Transl Med. 2020-6

[10]
Geometrical X-lets for Image Denoising.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索