Suppr超能文献

切除喉部中声带结构的动态纳米力学分析

Dynamic nanomechanical analysis of the vocal fold structure in excised larynges.

作者信息

Dion Gregory R, Coelho Paulo G, Teng Stephanie, Janal Malvin N, Amin Milan R, Branski Ryan C

机构信息

NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A.

Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, U.S.A.

出版信息

Laryngoscope. 2017 Jul;127(7):E225-E230. doi: 10.1002/lary.26410. Epub 2016 Nov 22.

Abstract

OBJECTIVES/HYPOTHESIS: Quantification of clinical outcomes after vocal fold (VF) interventions is challenging with current technology. High-speed digital imaging and optical coherence tomography (OCT) of excised larynges assess intact laryngeal function, but do not provide critical biomechanical information. We developed a protocol to quantify tissue properties in intact, excised VFs using dynamic nanomechanical analysis (nano-DMA) to obtain precise biomechanical properties in the micrometer scale.

STUDY DESIGN

Experimental animal study.

METHODS

Three pig larynges were bisected in the sagittal plane, maintaining an intact anterior commissure, and subjected to nano-DMA at nine locations with a 250-μm flat-tip punch and frequency sweep load profile (10-105 Hz, 1,000 μN peak force) across the free edge of the VF and inferiorly along the conus elasticus.

RESULTS

Storage, loss, and complex moduli increased inferiorly from the free edge. Storage moduli increased from a mean of 32.3 kPa (range, 6.5-55.38 kPa) at the free edge to 46.3kPa (range, 7.4-71.6) 5 mm below the free edge, and 71.4 kPa (range, 33.7-112 kPa) 1 cm below the free edge. Comparable values were 11.6 kPa (range, 5.0-20.0 kPa), 16.7 kPa (range, 5.7-26.8 kPa), and 22.6 kPa (range, 9.7-38.0 kPa) for loss modulus, and 35.7 kPa (range, 14.4-56.4 kPa), 50.1 kPa (range, 18.7-72.8 kPa), and 75.4 kPa (range, 42.0-116.0 kPa) for complex modulus. Another larynx repeatedly frozen and thawed during technique development had similarly increased storage, loss, and complex modulus trends across locations.

CONCLUSIONS

Nano-DMA of the intact hemilarynx provides a platform for quantification of biomechanical responses to a myriad of therapeutic interventions to complement data from high-speed imaging and OCT.

LEVEL OF EVIDENCE

NA Laryngoscope, 127:E225-E230, 2017.

摘要

目的/假设:利用现有技术对声带(VF)干预后的临床结果进行量化具有挑战性。对切除喉部进行高速数字成像和光学相干断层扫描(OCT)可评估喉部的完整功能,但无法提供关键的生物力学信息。我们开发了一种方案,通过动态纳米力学分析(nano-DMA)对完整的、切除的声带组织特性进行量化,以获得微米尺度上精确的生物力学特性。

研究设计

实验动物研究。

方法

将三只猪的喉部在矢状面切开,保留完整的前联合,然后使用250μm平头冲头在九个位置进行纳米DMA,并在声带游离缘及沿弹性圆锥下方进行频率扫描加载曲线(10 - 105Hz,峰值力1000μN)测试。

结果

储能模量、损耗模量和复数模量从游离缘向下均增加。储能模量从游离缘处的平均32.3kPa(范围6.5 - 55.38kPa)增加到游离缘下方5mm处的46.3kPa(范围7.4 - 71.6),以及游离缘下方1cm处的71.4kPa(范围33.7 - 112kPa)。损耗模量的可比数值分别为11.6kPa(范围5.0 - 20.0kPa)、16.7kPa(范围5.7 - 26.8kPa)和22.6kPa(范围9.7 - 38.0kPa),复数模量分别为35.7kPa(范围14.4 - 56.4kPa)、50.1kPa(范围18.7 - 72.8kPa)和75.4kPa(范围42.0 - 116.0kPa)。在技术开发过程中另一个反复冻融的喉部,各位置的储能模量、损耗模量和复数模量也呈现类似的增加趋势。

结论

完整半喉的纳米DMA为量化对多种治疗干预的生物力学反应提供了一个平台,以补充高速成像和OCT的数据。

证据水平

NA 喉镜,127:E225 - E230,2017年。

相似文献

1
Dynamic nanomechanical analysis of the vocal fold structure in excised larynges.
Laryngoscope. 2017 Jul;127(7):E225-E230. doi: 10.1002/lary.26410. Epub 2016 Nov 22.
2
Impact of medialization laryngoplasty on dynamic nanomechanical vocal fold structure properties.
Laryngoscope. 2018 May;128(5):1163-1169. doi: 10.1002/lary.26963. Epub 2017 Oct 9.
3
Automated Indentation Mapping of Vocal Fold Structure and Cover Properties Across Species.
Laryngoscope. 2019 Jan;129(1):E26-E31. doi: 10.1002/lary.27341. Epub 2018 Nov 8.
5
Determination of strain field on the superior surface of excised larynx vocal folds using DIC.
J Voice. 2013 Nov;27(6):659-67. doi: 10.1016/j.jvoice.2013.05.009. Epub 2013 Sep 23.
6
Young's modulus of canine vocal fold cover layers.
J Voice. 2014 Jul;28(4):406-10. doi: 10.1016/j.jvoice.2013.12.003. Epub 2014 Feb 1.
7
Measurement of Young's modulus of vocal folds by indentation.
J Voice. 2011 Jan;25(1):1-7. doi: 10.1016/j.jvoice.2009.09.005. Epub 2010 Feb 19.
8
The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
J Voice. 2016 Jan;30(1):1-4. doi: 10.1016/j.jvoice.2014.09.029. Epub 2015 Aug 19.
9
Vocal fold elasticity in the pig, sheep, and cow larynges.
J Voice. 2011 Mar;25(2):130-6. doi: 10.1016/j.jvoice.2009.09.002. Epub 2010 Feb 4.
10
Functional definitions of vocal fold geometry for laryngeal biomechanical modeling.
Ann Otol Rhinol Laryngol. 2002 Jan;111(1):83-92. doi: 10.1177/000348940211100114.

引用本文的文献

1
Drug delivery systems for wound healing treatment of upper airway injury.
Expert Opin Drug Deliv. 2024 Apr;21(4):573-591. doi: 10.1080/17425247.2024.2340653. Epub 2024 Apr 10.
2
Effect of Ligament Fibers on Dynamics of Synthetic, Self-Oscillating Vocal Folds in a Biomimetic Larynx Model.
Bioengineering (Basel). 2023 Sep 26;10(10):1130. doi: 10.3390/bioengineering10101130.
3
Changes in vocal fold gene expression and histology after injection augmentation in a recurrent laryngeal nerve injury model.
J Laryngol Otol. 2024 Feb;138(2):196-202. doi: 10.1017/S0022215123001135. Epub 2023 Jun 21.
4
Effect of continuous local dexamethasone on tissue biomechanics and histology after inhalational burn in a preclinical model.
Laryngoscope Investig Otolaryngol. 2023 Jun 26;8(4):939-945. doi: 10.1002/lio2.1093. eCollection 2023 Aug.
6
Augmentation and vocal fold biomechanics in a recurrent laryngeal nerve injury model.
Laryngoscope Investig Otolaryngol. 2022 Jul 6;7(4):1057-1064. doi: 10.1002/lio2.853. eCollection 2022 Aug.
7
Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
J Speech Lang Hear Res. 2022 Aug 17;65(8):2829-2845. doi: 10.1044/2022_JSLHR-21-00471. Epub 2022 Aug 1.
10
Investigating blunt force trauma to the larynx: The role of inferior-superior vocal fold displacement on phonation.
J Biomech. 2021 May 24;121:110377. doi: 10.1016/j.jbiomech.2021.110377. Epub 2021 Mar 16.

本文引用的文献

1
Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.
Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64:444-453. doi: 10.1016/j.msec.2016.04.018. Epub 2016 Apr 8.
2
Preliminary investigation of a novel technique for the quantification of the ex vivo biomechanical properties of the vocal folds.
Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:333-6. doi: 10.1016/j.msec.2014.08.051. Epub 2014 Sep 17.
3
Mechanical characterization of vocal fold tissue: a review study.
J Voice. 2014 Nov;28(6):657-67. doi: 10.1016/j.jvoice.2014.03.001. Epub 2014 Jul 5.
4
Young's modulus of canine vocal fold cover layers.
J Voice. 2014 Jul;28(4):406-10. doi: 10.1016/j.jvoice.2013.12.003. Epub 2014 Feb 1.
5
Macrocompression and nanoindentation of soft viscoelastic biological materials.
Tissue Eng Part C Methods. 2012 Dec;18(12):968-75. doi: 10.1089/ten.TEC.2012.0034. Epub 2012 Jul 19.
6
Triggered optical coherence tomography for capturing rapid periodic motion.
Sci Rep. 2011;1:48. doi: 10.1038/srep00048. Epub 2011 Jul 28.
7
Elastic and viscoelastic characterization of agar.
J Mech Behav Biomed Mater. 2012 Mar;7:60-8. doi: 10.1016/j.jmbbm.2011.05.027. Epub 2011 May 25.
8
State of the art laryngeal imaging: research and clinical implications.
Curr Opin Otolaryngol Head Neck Surg. 2010 Jun;18(3):147-52. doi: 10.1097/MOO.0b013e3283395dd4.
9
Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues.
J Mater Res. 2009 Mar;24(3):638-646. doi: 10.1557/JMR.2009.0130.
10
Measurement of Young's modulus of vocal folds by indentation.
J Voice. 2011 Jan;25(1):1-7. doi: 10.1016/j.jvoice.2009.09.005. Epub 2010 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验