Dion Gregory R, Coelho Paulo G, Teng Stephanie, Janal Malvin N, Amin Milan R, Branski Ryan C
NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A.
Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, U.S.A.
Laryngoscope. 2017 Jul;127(7):E225-E230. doi: 10.1002/lary.26410. Epub 2016 Nov 22.
OBJECTIVES/HYPOTHESIS: Quantification of clinical outcomes after vocal fold (VF) interventions is challenging with current technology. High-speed digital imaging and optical coherence tomography (OCT) of excised larynges assess intact laryngeal function, but do not provide critical biomechanical information. We developed a protocol to quantify tissue properties in intact, excised VFs using dynamic nanomechanical analysis (nano-DMA) to obtain precise biomechanical properties in the micrometer scale.
Experimental animal study.
Three pig larynges were bisected in the sagittal plane, maintaining an intact anterior commissure, and subjected to nano-DMA at nine locations with a 250-μm flat-tip punch and frequency sweep load profile (10-105 Hz, 1,000 μN peak force) across the free edge of the VF and inferiorly along the conus elasticus.
Storage, loss, and complex moduli increased inferiorly from the free edge. Storage moduli increased from a mean of 32.3 kPa (range, 6.5-55.38 kPa) at the free edge to 46.3kPa (range, 7.4-71.6) 5 mm below the free edge, and 71.4 kPa (range, 33.7-112 kPa) 1 cm below the free edge. Comparable values were 11.6 kPa (range, 5.0-20.0 kPa), 16.7 kPa (range, 5.7-26.8 kPa), and 22.6 kPa (range, 9.7-38.0 kPa) for loss modulus, and 35.7 kPa (range, 14.4-56.4 kPa), 50.1 kPa (range, 18.7-72.8 kPa), and 75.4 kPa (range, 42.0-116.0 kPa) for complex modulus. Another larynx repeatedly frozen and thawed during technique development had similarly increased storage, loss, and complex modulus trends across locations.
Nano-DMA of the intact hemilarynx provides a platform for quantification of biomechanical responses to a myriad of therapeutic interventions to complement data from high-speed imaging and OCT.
NA Laryngoscope, 127:E225-E230, 2017.
目的/假设:利用现有技术对声带(VF)干预后的临床结果进行量化具有挑战性。对切除喉部进行高速数字成像和光学相干断层扫描(OCT)可评估喉部的完整功能,但无法提供关键的生物力学信息。我们开发了一种方案,通过动态纳米力学分析(nano-DMA)对完整的、切除的声带组织特性进行量化,以获得微米尺度上精确的生物力学特性。
实验动物研究。
将三只猪的喉部在矢状面切开,保留完整的前联合,然后使用250μm平头冲头在九个位置进行纳米DMA,并在声带游离缘及沿弹性圆锥下方进行频率扫描加载曲线(10 - 105Hz,峰值力1000μN)测试。
储能模量、损耗模量和复数模量从游离缘向下均增加。储能模量从游离缘处的平均32.3kPa(范围6.5 - 55.38kPa)增加到游离缘下方5mm处的46.3kPa(范围7.4 - 71.6),以及游离缘下方1cm处的71.4kPa(范围33.7 - 112kPa)。损耗模量的可比数值分别为11.6kPa(范围5.0 - 20.0kPa)、16.7kPa(范围5.7 - 26.8kPa)和22.6kPa(范围9.7 - 38.0kPa),复数模量分别为35.7kPa(范围14.4 - 56.4kPa)、50.1kPa(范围18.7 - 72.8kPa)和75.4kPa(范围42.0 - 116.0kPa)。在技术开发过程中另一个反复冻融的喉部,各位置的储能模量、损耗模量和复数模量也呈现类似的增加趋势。
完整半喉的纳米DMA为量化对多种治疗干预的生物力学反应提供了一个平台,以补充高速成像和OCT的数据。
NA 喉镜,127:E225 - E230,2017年。